000 01942cam a2200349 a 4500
003 EG-GiCUC
005 20250223031038.0
008 140910s2013 ua d f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.20.04.M.Sc.2013.Ay.O
100 0 _aAyman Taha Awad Allah Mohammed Farahat
245 1 0 _aOutlier values identification in data mining applications /
_cAyman Taha Awad Allah Mohammed Farahat ; Supervised Osman M. Hegazy , Ali S. Hadi , Kareem M. Darwish
246 1 5 _aاكتــشاف القيــم الغيـــر نمطيـة فى تطبيقات التنقيب فى البيانات
260 _aCairo :
_bAyman Taha Awad Allah Mohammed Farahat ,
_c2013
300 _a194 Leaves :
_bcharts ;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Computers and Information - Department of Information Systems
520 _aOutliers identification algorithms for categorical data usually take long computational time.They also strongly depend on parameter settings that require prior information about the data,e.g.,number of outliers in the data, maximum length of itemsets and/or minimum support for frequent itemsets.These input parameters are classified into two groups;(a)in-trinsic parameters which are required by an outliers detection method to produce a score for each object and(b) decision parameters which are required to decide if anobject is an out-lier based on the score
530 _aIssued also as CD
653 4 _aData mining
653 4 _aMeasuring association
653 4 _aOut lievs detection categorical data
700 0 _aAli S. Hadi ,
_eSupervisor
700 0 _aKareem Mohamed Darwish ,
_eSupervisor
700 0 _aOsman Mohamed Hegazy ,
_eSupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aAml
_eCataloger
905 _aNazla
_eRevisor
942 _2ddc
_cTH
999 _c47288
_d47288