000 | 01937cam a2200337 a 4500 | ||
---|---|---|---|
003 | EG-GiCUC | ||
005 | 20250223031348.0 | ||
008 | 151206s2015 ua do f m 000 0 eng d | ||
040 |
_aEG-GiCUC _beng _cEG-GiCUC |
||
041 | 0 | _aeng | |
049 | _aDeposite | ||
097 | _aM.Sc | ||
099 | _aCai01.20.01.M.Sc.2015.Ah.M | ||
100 | 0 | _aAhmed Galal Ahmed Mohammed | |
245 | 1 | 0 |
_aMachine learning based spectrum sensing techniques in cognitive radio / _cAhmed Galal Ahmed Mohammed ; Supervised Reda Elkhoribi , Mahmoud Ahmed Ismail |
246 | 1 | 5 | _aاستشعار الطيف انترددى بإستخدام آليات انتعلم فى الراديو الإدراكى |
260 |
_aCairo : _bAhmed Galal Ahmed Mohammed , _c2015 |
||
300 |
_a100 Leaves : _bcharts , photographs; _c30cm |
||
502 | _aThesis (M.Sc.) - Cairo University - Faculty of Computer and Information - Department of Information Technology | ||
520 | _aWe implement and design 8 digital modulations are: 2ASK, 2FSK, 4ASK, 4FSK, 2PSK, 4PSK, DPSK, and 16QAM. The maximum value of spectral density of normalized centered amplitude and the average value of normalized absolute centered instantaneous phase deviation choose as key features for digital modulation recognizer based on the ANN. We used the Rayleigh fading channel to model signals propagation and corrupted the signals by additive white gaussian noise (AWGN) for testing the algorithm. The simulation results show that the ANN could be recognized the different types of the PUs and corrected classify the signals in its current state of development | ||
530 | _aIssued also as CD | ||
653 | 4 | _aANN | |
653 | 4 | _aDigital modulation | |
653 | 4 | _aMultipath fading channel | |
700 | 0 |
_aMahmoud Ahmed Ismail , _eSupervisor |
|
700 | 0 |
_aReda Elkhoribi , _eSupervisor |
|
856 | _uhttp://172.23.153.220/th.pdf | ||
905 |
_aNazla _eRevisor |
||
905 |
_aSamia _eCataloger |
||
942 |
_2ddc _cTH |
||
999 |
_c53769 _d53769 |