000 01937cam a2200337 a 4500
003 EG-GiCUC
005 20250223031348.0
008 151206s2015 ua do f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.20.01.M.Sc.2015.Ah.M
100 0 _aAhmed Galal Ahmed Mohammed
245 1 0 _aMachine learning based spectrum sensing techniques in cognitive radio /
_cAhmed Galal Ahmed Mohammed ; Supervised Reda Elkhoribi , Mahmoud Ahmed Ismail
246 1 5 _aاستشعار الطيف انترددى بإستخدام آليات انتعلم فى الراديو الإدراكى
260 _aCairo :
_bAhmed Galal Ahmed Mohammed ,
_c2015
300 _a100 Leaves :
_bcharts , photographs;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Computer and Information - Department of Information Technology
520 _aWe implement and design 8 digital modulations are: 2ASK, 2FSK, 4ASK, 4FSK, 2PSK, 4PSK, DPSK, and 16QAM. The maximum value of spectral density of normalized centered amplitude and the average value of normalized absolute centered instantaneous phase deviation choose as key features for digital modulation recognizer based on the ANN. We used the Rayleigh fading channel to model signals propagation and corrupted the signals by additive white gaussian noise (AWGN) for testing the algorithm. The simulation results show that the ANN could be recognized the different types of the PUs and corrected classify the signals in its current state of development
530 _aIssued also as CD
653 4 _aANN
653 4 _aDigital modulation
653 4 _aMultipath fading channel
700 0 _aMahmoud Ahmed Ismail ,
_eSupervisor
700 0 _aReda Elkhoribi ,
_eSupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aNazla
_eRevisor
905 _aSamia
_eCataloger
942 _2ddc
_cTH
999 _c53769
_d53769