000 02041cam a2200337 a 4500
003 EG-GiCUC
005 20250223031618.0
008 161124s2016 ua dh f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.13.06.M.Sc.2016.Di.H
100 0 _aDina Tantawy Hassan Saleh
245 1 0 _aHandling mixed categorical and numerical features in machine learning techniques /
_cDina Tantawy Hassan Saleh ; Supervised Amir Fouad Sorial Atiya , Olfat Gamil Shaker
246 1 5 _aمعالجة الخصائص الرقمية والفئوية المختلطة في طرق تعليم الآلة
260 _aCairo :
_bDina Tantawy Hassan Saleh ,
_c2016
300 _a94 P. :
_bcharts , facsimiles ;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Computer Engineering
520 _aMost classi{uFB01}ers cannot handle mixed categorical and numerical features directly. Each classi{uFB01}er is usually built for only one type of features either categorical or numerical ones. This study analyzes the handling technique using mid-sized data on several di{uFB00}erent classi{uFB01}ers. It also introduce a number of new techniques like dynamic simplex, catRank, Joint measure and devise the proof for kernelized versions of IOF, OF, Goodall, Lin and overlap measures. A case study on breast cancer prediction is also provided with some recommendation for both medical and machine learning parts. The study reveals an association between classi{uFB01}ers and techniques and provides some recommendation for handling techniques usage
530 _aIssued also as CD
653 4 _aClassi{uFB01}cation
653 4 _aMachine Learning
653 4 _aMixed Categorical and Numerical
700 0 _aAmir Fouad Sorial Atiya ,
_eSupervisor
700 0 _aOlfat Gamil Shaker ,
_eSupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aNazla
_eRevisor
905 _aSamah
_eCataloger
942 _2ddc
_cTH
999 _c58763
_d58763