000 | 02041cam a2200337 a 4500 | ||
---|---|---|---|
003 | EG-GiCUC | ||
005 | 20250223031618.0 | ||
008 | 161124s2016 ua dh f m 000 0 eng d | ||
040 |
_aEG-GiCUC _beng _cEG-GiCUC |
||
041 | 0 | _aeng | |
049 | _aDeposite | ||
097 | _aM.Sc | ||
099 | _aCai01.13.06.M.Sc.2016.Di.H | ||
100 | 0 | _aDina Tantawy Hassan Saleh | |
245 | 1 | 0 |
_aHandling mixed categorical and numerical features in machine learning techniques / _cDina Tantawy Hassan Saleh ; Supervised Amir Fouad Sorial Atiya , Olfat Gamil Shaker |
246 | 1 | 5 | _aمعالجة الخصائص الرقمية والفئوية المختلطة في طرق تعليم الآلة |
260 |
_aCairo : _bDina Tantawy Hassan Saleh , _c2016 |
||
300 |
_a94 P. : _bcharts , facsimiles ; _c30cm |
||
502 | _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Computer Engineering | ||
520 | _aMost classi{uFB01}ers cannot handle mixed categorical and numerical features directly. Each classi{uFB01}er is usually built for only one type of features either categorical or numerical ones. This study analyzes the handling technique using mid-sized data on several di{uFB00}erent classi{uFB01}ers. It also introduce a number of new techniques like dynamic simplex, catRank, Joint measure and devise the proof for kernelized versions of IOF, OF, Goodall, Lin and overlap measures. A case study on breast cancer prediction is also provided with some recommendation for both medical and machine learning parts. The study reveals an association between classi{uFB01}ers and techniques and provides some recommendation for handling techniques usage | ||
530 | _aIssued also as CD | ||
653 | 4 | _aClassi{uFB01}cation | |
653 | 4 | _aMachine Learning | |
653 | 4 | _aMixed Categorical and Numerical | |
700 | 0 |
_aAmir Fouad Sorial Atiya , _eSupervisor |
|
700 | 0 |
_aOlfat Gamil Shaker , _eSupervisor |
|
856 | _uhttp://172.23.153.220/th.pdf | ||
905 |
_aNazla _eRevisor |
||
905 |
_aSamah _eCataloger |
||
942 |
_2ddc _cTH |
||
999 |
_c58763 _d58763 |