000 01799cam a2200313 a 4500
003 EG-GiCUC
008 170604s2016 ua e f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.13.11.M.Sc.2016.An.A
100 0 _aAnwr Mohammed Albaghdadi
245 1 3 _aAn artificial neural network model for gas turbine performance prediction /
_cAnwr Mohammed Albaghdadi ; Supervised M. G. Khalafallah , Abdelnaby Mohamed
246 1 5 _aالتنبؤ باداء التوربينات الغازية باستخدام نموذج الشبكات العصبيه الاصطناعيه
260 _aCairo :
_bAnwr Mohammed Albaghdadi ,
_c2016
300 _a91 P. :
_bplans ;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Mechanical Power Engineering
520 _aThe present thesis introduces a study for the application of ANN modeling to investigate the performance prediction of a gas-turbine power-generation unit. A wide range of operating data (over two years) of a small gas turbine (20 MW) is used for training, investigating and evaluating the ANN model. ANN shows good predict ability results that would add an interesting advantage to the maintenance team efforts. Moreover, the model could be used as a guide for operators to estimate different failure possibilities that could happened to various parts of the gas turbine engine
530 _aIssued also as CD
653 4 _aArtificial neural network
653 4 _aGas turbine
653 4 _aPredict
700 0 _aAbdelnaby Mohamed Abdelfattah,
_eSupervisor
700 0 _aMohamed Galal Eldin Khalafallah ,
_eSupervisor
905 _aNazla
_eRevisor
905 _aSamia
_eCataloger
942 _2ddc
_cTH
999 _c61074
_d61074