000 | 01799cam a2200313 a 4500 | ||
---|---|---|---|
003 | EG-GiCUC | ||
008 | 170604s2016 ua e f m 000 0 eng d | ||
040 |
_aEG-GiCUC _beng _cEG-GiCUC |
||
041 | 0 | _aeng | |
049 | _aDeposite | ||
097 | _aM.Sc | ||
099 | _aCai01.13.11.M.Sc.2016.An.A | ||
100 | 0 | _aAnwr Mohammed Albaghdadi | |
245 | 1 | 3 |
_aAn artificial neural network model for gas turbine performance prediction / _cAnwr Mohammed Albaghdadi ; Supervised M. G. Khalafallah , Abdelnaby Mohamed |
246 | 1 | 5 | _aالتنبؤ باداء التوربينات الغازية باستخدام نموذج الشبكات العصبيه الاصطناعيه |
260 |
_aCairo : _bAnwr Mohammed Albaghdadi , _c2016 |
||
300 |
_a91 P. : _bplans ; _c30cm |
||
502 | _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Mechanical Power Engineering | ||
520 | _aThe present thesis introduces a study for the application of ANN modeling to investigate the performance prediction of a gas-turbine power-generation unit. A wide range of operating data (over two years) of a small gas turbine (20 MW) is used for training, investigating and evaluating the ANN model. ANN shows good predict ability results that would add an interesting advantage to the maintenance team efforts. Moreover, the model could be used as a guide for operators to estimate different failure possibilities that could happened to various parts of the gas turbine engine | ||
530 | _aIssued also as CD | ||
653 | 4 | _aArtificial neural network | |
653 | 4 | _aGas turbine | |
653 | 4 | _aPredict | |
700 | 0 |
_aAbdelnaby Mohamed Abdelfattah, _eSupervisor |
|
700 | 0 |
_aMohamed Galal Eldin Khalafallah , _eSupervisor |
|
905 |
_aNazla _eRevisor |
||
905 |
_aSamia _eCataloger |
||
942 |
_2ddc _cTH |
||
999 |
_c61074 _d61074 |