000 01806cam a2200349 a 4500
003 EG-GiCUC
005 20250223031857.0
008 171216s2017 ua dh f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.20.03.M.Sc.2017.Am.L
100 0 _aAmany Mohamed Hesham Farouk
245 1 0 _aLayout analysis of arabic documents /
_cAmany Mohamed Hesham Farouk ; Supervised Ibrahim Farag , Amr Badr , Sherif Abdou
246 1 5 _aتحليل التنسيق في الوثائق العربية
260 _aCairo :
_bAmany Mohamed Hesham Farouk ,
_c2017
300 _a78 Leaves :
_bcharts , facsimiles ;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Computers and Information - Department of Computer Science
520 _aDocument layout analysis is important in converting document images into text. Arabic script cursive nature and different writing styles cause challenges. In this work, we introduce an approach for segmenting image into zones. Text zones are segmented into lines and then words. System accuracy achieved is 93.2% for zone classification and 98.3% for line segmentation. Also, a posteriori, word based and font-size invariant approach for font recognition using textural features based on cosine transform is proposed. Results show that the average recognition rate is 93.2%
530 _aIssued also as CD
653 4 _aAdaptive binarization
653 4 _aArabic documents
653 4 _aLayout analysis
700 0 _aAmr Badr ,
_eSupervisor
700 0 _aIbrahim Farag ,
_eSupervisor
700 0 _aSherif Abdou ,
_eSupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aNazla
_eRevisor
905 _aShimaa
_eCataloger
942 _2ddc
_cTH
999 _c64031
_d64031