000 | 01971cam a2200313 a 4500 | ||
---|---|---|---|
003 | EG-GiCUC | ||
008 | 180303s2017 ua f m 000 0 eng d | ||
040 |
_aEG-GiCUC _beng _cEG-GiCUC |
||
041 | 0 | _aeng | |
049 | _aDeposite | ||
097 | _aM.Sc | ||
099 | _aCai01.13.03.M.Sc.2017.Ma.W | ||
100 | 0 | _aManar Nasser Amin Mahmoud | |
245 | 1 | 0 |
_aWavelet-based fast computer-aided characterization of liver steatosis using conventional B-mode ultrasound images / _cManar Nasser Amin Mahmoud ; Supervised Ahmed M. Ehab Mahmoud , Muhammad Ali Rushdi |
246 | 1 | 5 | _aتقنية سريعة لتوصيف الكبد الدهنى بمساعدة الحاسب و استخدام المويجات و الصور التقليدية للموجات فوق الصوتية |
260 |
_aCairo : _bManar Nasser Amin Mahmoud , _c2017 |
||
300 |
_a68 P. ; _c30cm |
||
502 | _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Systems and Biomedical Engineering | ||
520 | _aHepatic steatosis occurs when lipids accumulate in the liver and can eventually liver failure requiring a liver transplant. This work develop a computationally-efficient technique to classify fatty liver using B-mode us images. The technique relies on extracting features from the Wavelet domain using the approximation part of us images. Features include the first-order gray-level parameters, co-occurrence matrices, and local binary patterns. The technique was tested using mouse livers and image of human livers. This technique shall improve the implementation of manufacturer independent real time techniques for fatty liver classification | ||
530 | _aIssued also as CD | ||
653 | 4 | _aFatty liver disease | |
653 | 4 | _aUltrasound images | |
653 | 4 | _aWavelet packet transformation | |
700 | 0 |
_aAhmed Mohamed Ehab Mahmoud , _eSupervisor |
|
700 | 0 |
_aMuhammad Ali Rushdi , _eSupervisor |
|
905 |
_aNazla _eRevisor |
||
905 |
_aSamia _eCataloger |
||
942 |
_2ddc _cTH |
||
999 |
_c65242 _d65242 |