000 01971cam a2200313 a 4500
003 EG-GiCUC
008 180303s2017 ua f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.13.03.M.Sc.2017.Ma.W
100 0 _aManar Nasser Amin Mahmoud
245 1 0 _aWavelet-based fast computer-aided characterization of liver steatosis using conventional B-mode ultrasound images /
_cManar Nasser Amin Mahmoud ; Supervised Ahmed M. Ehab Mahmoud , Muhammad Ali Rushdi
246 1 5 _aتقنية سريعة لتوصيف الكبد الدهنى بمساعدة الحاسب و استخدام المويجات و الصور التقليدية للموجات فوق الصوتية
260 _aCairo :
_bManar Nasser Amin Mahmoud ,
_c2017
300 _a68 P. ;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Systems and Biomedical Engineering
520 _aHepatic steatosis occurs when lipids accumulate in the liver and can eventually liver failure requiring a liver transplant. This work develop a computationally-efficient technique to classify fatty liver using B-mode us images. The technique relies on extracting features from the Wavelet domain using the approximation part of us images. Features include the first-order gray-level parameters, co-occurrence matrices, and local binary patterns. The technique was tested using mouse livers and image of human livers. This technique shall improve the implementation of manufacturer independent real time techniques for fatty liver classification
530 _aIssued also as CD
653 4 _aFatty liver disease
653 4 _aUltrasound images
653 4 _aWavelet packet transformation
700 0 _aAhmed Mohamed Ehab Mahmoud ,
_eSupervisor
700 0 _aMuhammad Ali Rushdi ,
_eSupervisor
905 _aNazla
_eRevisor
905 _aSamia
_eCataloger
942 _2ddc
_cTH
999 _c65242
_d65242