000 02181cam a2200337 a 4500
003 EG-GiCUC
005 20250223032150.0
008 190115s2018 ua o f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.13.12.M.Sc.2018.Mo.A
100 0 _aMohamed Atta Farahat Mohamed
245 1 0 _aArtificial intelligence applications for pore pressure and fracture pressure prediction from seismic attributes analysis and well logs data /
_cMohamed Atta Farahat Mohamed ; Supervised Abdelalim Hashem Elsayed , Abdulaziz Mohamed Abdulaziz
246 1 5 _aتطبيقات الذكاء الاصطناعى فى التنبؤ بضغط المسام و ضغط الكسر بتحليل بيانات السمات الزلزالية السيزمية وتسجيلات الابار
260 _aCairo :
_bMohamed Atta Farahat Mohamed ,
_c2018
300 _a103 P. :
_bphotographs ;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Metallurgical Engineering
520 _aThis study aims to investigate the pore and fracture pressure of sub-surface formations. Eaton{u2019}s method is applied to predict pore and fracture pressure of wells. Inversion process with numerous algorithms are applied to seismic area of the field. Prediction methods are applied to investigate best attributes such as single, multiple seismic attribute analysis and neural network. Well logs and seismic attributes obtained from inversion process and seismic data are used to train ANN. ANN is validated using blind wells which are not included in training process. The correlations of ANN training and validation are good so ANN is applied for prediction of pore and fracture pressure for 3D seismic area of field
530 _aIssued also as CD
653 4 _aFracture pressure
653 4 _aNeural network
653 4 _aPore pressure
700 0 _aAbdelalim Hashem Elsayed ,
_eSupervisor
700 0 _aAbdulaziz Mohamed Abdulaziz ,
_eSupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aNazla
_eRevisor
905 _aSamia
_eCataloger
942 _2ddc
_cTH
999 _c69597
_d69597