000 01854cam a2200325 a 4500
003 EG-GiCUC
005 20250223032433.0
008 191109s2019 ua db f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.13.12.M.Sc.2019.Sa.Q
100 0 _aSamar Saied Abdelrady Shahat Hawary
245 1 0 _aQuantification and prediction of carbonate diagenesis from well logs and core data by artificial neural network /
_cSamar Saied Abdelrady Shahat Hawary ; Supervised Abdulaziz M. Abdulaziz
246 1 5 _aالتقييم الكمى لتحوارت الصخور الجيرية والتنبؤ بها من معلومات تسجيلات الآبار واللباب الصخرى عن طريق الشبكات الاصطناعية العصبية
260 _aCairo :
_bSamar Saied Abdelrady Shahat Hawary ,
_c2019
300 _a111 P. :
_bcharts , maps ;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Metallurgical Engineering
520 _aThe application of artificial neural networks (ANNs) is used successfully to generate a numerical scale for diagenesis quantification from 0 to 10 with specified particular range for each type of diagenesis. It enhances identifying the rock typing and generated a link between geological and reservoir modeling. Also, a mathematical correlation is generated to directly predict the quantification of diagenesis in carbonate rocks in the study area
530 _aIssued also as CD
653 4 _aCarbonate reservoir
653 4 _aDiagenesis Coefficient prediction
653 4 _aWell logging
700 0 _aAbdulaziz M. Abdulaziz ,
_eSupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aNazla
_eRevisor
905 _aShimaa
_eCataloger
942 _2ddc
_cTH
999 _c75062
_d75062