000 | 01854cam a2200325 a 4500 | ||
---|---|---|---|
003 | EG-GiCUC | ||
005 | 20250223032433.0 | ||
008 | 191109s2019 ua db f m 000 0 eng d | ||
040 |
_aEG-GiCUC _beng _cEG-GiCUC |
||
041 | 0 | _aeng | |
049 | _aDeposite | ||
097 | _aM.Sc | ||
099 | _aCai01.13.12.M.Sc.2019.Sa.Q | ||
100 | 0 | _aSamar Saied Abdelrady Shahat Hawary | |
245 | 1 | 0 |
_aQuantification and prediction of carbonate diagenesis from well logs and core data by artificial neural network / _cSamar Saied Abdelrady Shahat Hawary ; Supervised Abdulaziz M. Abdulaziz |
246 | 1 | 5 | _aالتقييم الكمى لتحوارت الصخور الجيرية والتنبؤ بها من معلومات تسجيلات الآبار واللباب الصخرى عن طريق الشبكات الاصطناعية العصبية |
260 |
_aCairo : _bSamar Saied Abdelrady Shahat Hawary , _c2019 |
||
300 |
_a111 P. : _bcharts , maps ; _c30cm |
||
502 | _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Metallurgical Engineering | ||
520 | _aThe application of artificial neural networks (ANNs) is used successfully to generate a numerical scale for diagenesis quantification from 0 to 10 with specified particular range for each type of diagenesis. It enhances identifying the rock typing and generated a link between geological and reservoir modeling. Also, a mathematical correlation is generated to directly predict the quantification of diagenesis in carbonate rocks in the study area | ||
530 | _aIssued also as CD | ||
653 | 4 | _aCarbonate reservoir | |
653 | 4 | _aDiagenesis Coefficient prediction | |
653 | 4 | _aWell logging | |
700 | 0 |
_aAbdulaziz M. Abdulaziz , _eSupervisor |
|
856 | _uhttp://172.23.153.220/th.pdf | ||
905 |
_aNazla _eRevisor |
||
905 |
_aShimaa _eCataloger |
||
942 |
_2ddc _cTH |
||
999 |
_c75062 _d75062 |