000 02084cam a2200337 a 4500
003 EG-GiCUC
005 20250223032710.0
008 210301s2020 ua dho f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aPh.D
099 _aCai01.20.01.Ph.D.2020.El.M
100 0 _aElham Shawky Salama Omer
245 1 0 _aMultimodal emotion recognition schema /
_cElham Shawky Salama Omer ; Supervised Reda Abdelwahab Ahmed Alkoribi , Mahmoud Ahmed Ismail Shoman , Mohammed Ahmed Wahby Shalaby
246 1 5 _aمخطط للتعرف المتعدد الوسائل على التعبيرات
260 _aCairo :
_bElham Shawky Salama Omer ,
_c2020
300 _a337 Leaves :
_bcharts , facsimiles , photoghrphs ;
_c30cm
502 _aThesis (Ph.D.) - Cairo University - Faculty of Computure Artifical Intelligence - Department of Information Technology
520 _aMany techniques were applied to improve the robustness of the multi-modal emotion recog-nition systems. In the proposed system ,anove lmulti modale motion recognition system using Electroencephalogram (EEG) signals ,and facial expression sisproposed .In this thesis, the 3- Dimensional Convolutional Neural Networks (3D-CNN)is in vestigated with the combination of theensemblelearningtechniques.SeveralexperimentalworksaretestedusingtheDEAP (Dataset of Emotion Analysis using the EEG, and Physiological ,and Video Signals)data. Three main recognition systems are built to achieve the proposed goal of this thesis. They are namely EEG-based emotion recognition system, face-based emotion recognition system ,and fusion-based emotion recognition system
530 _aIssued also as CD
653 4 _aAverage filter
653 4 _aElectro-encephalogram EEG
653 4 _aMultimodal emotion recognition schema
700 0 _aMahmoud Ahmed Ismail Shoman ,
_eSupervisor
700 0 _aReda Abdelwahab Ahmed Alkoribi ,
_eSupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aNazla
_eRevisor
905 _aShimaa
_eCataloger
942 _2ddc
_cTH
999 _c80062
_d80062