000 | 02084cam a2200337 a 4500 | ||
---|---|---|---|
003 | EG-GiCUC | ||
005 | 20250223032710.0 | ||
008 | 210301s2020 ua dho f m 000 0 eng d | ||
040 |
_aEG-GiCUC _beng _cEG-GiCUC |
||
041 | 0 | _aeng | |
049 | _aDeposite | ||
097 | _aPh.D | ||
099 | _aCai01.20.01.Ph.D.2020.El.M | ||
100 | 0 | _aElham Shawky Salama Omer | |
245 | 1 | 0 |
_aMultimodal emotion recognition schema / _cElham Shawky Salama Omer ; Supervised Reda Abdelwahab Ahmed Alkoribi , Mahmoud Ahmed Ismail Shoman , Mohammed Ahmed Wahby Shalaby |
246 | 1 | 5 | _aمخطط للتعرف المتعدد الوسائل على التعبيرات |
260 |
_aCairo : _bElham Shawky Salama Omer , _c2020 |
||
300 |
_a337 Leaves : _bcharts , facsimiles , photoghrphs ; _c30cm |
||
502 | _aThesis (Ph.D.) - Cairo University - Faculty of Computure Artifical Intelligence - Department of Information Technology | ||
520 | _aMany techniques were applied to improve the robustness of the multi-modal emotion recog-nition systems. In the proposed system ,anove lmulti modale motion recognition system using Electroencephalogram (EEG) signals ,and facial expression sisproposed .In this thesis, the 3- Dimensional Convolutional Neural Networks (3D-CNN)is in vestigated with the combination of theensemblelearningtechniques.SeveralexperimentalworksaretestedusingtheDEAP (Dataset of Emotion Analysis using the EEG, and Physiological ,and Video Signals)data. Three main recognition systems are built to achieve the proposed goal of this thesis. They are namely EEG-based emotion recognition system, face-based emotion recognition system ,and fusion-based emotion recognition system | ||
530 | _aIssued also as CD | ||
653 | 4 | _aAverage filter | |
653 | 4 | _aElectro-encephalogram EEG | |
653 | 4 | _aMultimodal emotion recognition schema | |
700 | 0 |
_aMahmoud Ahmed Ismail Shoman , _eSupervisor |
|
700 | 0 |
_aReda Abdelwahab Ahmed Alkoribi , _eSupervisor |
|
856 | _uhttp://172.23.153.220/th.pdf | ||
905 |
_aNazla _eRevisor |
||
905 |
_aShimaa _eCataloger |
||
942 |
_2ddc _cTH |
||
999 |
_c80062 _d80062 |