000 02192cam a2200349 a 4500
003 EG-GiCUC
005 20250223032835.0
008 211024s2021 ua f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.13.06.M.Sc.2021.Em.N
100 0 _aEman Hosam Adel Elsayed
245 1 0 _aNovel classification feature sets for source code plagiarism detection of java files /
_cEman Hosam Adel Elsayed ; Supervised Magda B. Fayek , Amir F. Sorial , Mayada M. Ali
246 1 5 _aمجموعات مبتكرة من الخصائص لتصنيف و اكتشاف السرقة الأدبية لبرامج الجافا
260 _aCairo :
_bEman Hosam Adel Elsayed ,
_c2021
300 _a85 P. ;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Computer Engineering
520 _aIn programming learning environments, the pressure of delivering many assignments makes plagiarism become the easiest solution. This problem of plagiarism threatens the learning process and obstructs the evaluation fairness. Therefore, fast, automatic and accurate detection of source code plagiarism becomes of the essence.This research proposes novel classification feature sets to detect whether a Java file is plagiarized.The proposed feature sets are based on using histograms to summarize the similarity matrix of function signatures and comparing the lexical code similarity of each individual class pair. For testing the effectiveness, a source code plagiarism dataset that consists of 12K Java files was used. The results show a 4% improvement in F-Measure. A re-annotation to the dataset is performed and improves F-Measure by 7.5%.
530 _aIssued also as CD
653 4 _aSoftware Similarity Detection
653 4 _aSource Code Plagiarism Detection
653 4 _aSource Code Reuse Detection
700 0 _aAmir F. Sorial ,
_eSupervisor
700 0 _aMagda B. Fayek ,
_eSupervisor
700 0 _aMayada M. Ali ,
_eSupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aNazla
_eRevisor
905 _aShimaa
_eCataloger
942 _2ddc
_cTH
999 _c82777
_d82777