Some new generated families of distributions with applications in actuarial sciences /

Amany Mohamed Shehata Hamed El-Sheikh,

Some new generated families of distributions with applications in actuarial sciences / بعض عائلات التوزيعات الاحتمالية الجديدة المولدة مع التطبيقات في العلوم الاكتوارية by Amany Mohamed Shehata Hamed El-Sheikh ; Supervisors Prof. El-Sayed Ahmed El-Sherpieny, Prof.Ahmed Zakaria Afify. - 144 pages : illustrations ; 30 cm. + CD.

Thesis (Ph.D)-Cairo University, 2025.

Bibliography: pages 135-144.

A risk measure is used in financial mathematics to quantify the degree of risk or uncertainty associated with a certain event or series of occurrences and to establish how much of an asset or group of assets (traditionally currency) should be held in reserve. This reserve is intended to help the regulator accept the risks that financial institutions, such banks and insurance firms, assume. A function that converts a probability distribution to a real number is known as a risk measure in statistics. In statistics, a wide range of risk measures are employed; the selection of a particular measure is contingent upon the specific use case. Variance, standard deviation, projected shortfall, value at risk, conditional value at risk, and semi-deviation are a few examples of common risk measurements. Classical distributions are frequently utilized in many applicable fields, including engineering, medical sciences, actuarial science, environmental studies, economics, finance, and insurance, to represent lifespan data. Quite successfully, these distributions have been utilized in all the sectors indicated above. However, when the data follow non monotonic failure rates, these classical distributions do not always provide the greatest match in many domains, including reliability engineering and the medical sciences. It is always feasible to create a wide variety of statistical distributions to create more adaptable and appropriate real-world circumstances. Thus, expanded variants of these classical distributions are clearly needed to handle reliability engineering and bio-medical data. The researchers' motivation to create fresh extensions of the current distributions stemmed from this curiosity. By incorporating one extra variable, these extended distributions offer greater flexibility. لقد استخدمت العديد من التوزيعات الكلاسيكية علي نطاق واسع علي مدي العقود الماضية لتمثيل البيانات في عدة مجالات مثل الهندسة والعلوم البيئية والطبية والدرسات البيولوجية والديمغرافيا والاقتصاد والتمويل والتأمين ولكن في كثير من الحالات نجد أن التوزيعات الاحتمالية الكلاسيكية ليست مناسبه للبيانات الحقيقية. ولذلك فما زالت هناك حاجة ملحة الي العديد من التوزيعات التي تناسب المجالات التطبيقية مثل تطبيقات الحياة والتمويل والتأمين ولهذا السبب قد تم دراسة عدة طرق للحصول علي أسر جديدة من التوزيعات.
وقد بذلت بعض المحاولات لتحديد العائلات الجديدة من التوزيعات الاحتمالية التى تمتد لعائلات معروفة من التوزيعات وفي الوقت نفسه توفر مرونة كبيرة في البيانات في الممارسة العلمية. ومن بين هذه الأساليب يتم تركيب بعض التوزيعات المنفصلة مع توزيعات الحياة حتي تكون ذات مرونة كبيرة في تمثيل بيانات الحياة وذلك من وجهة النظر العلمية





Text in English and abstract in Arabic & English.


Mathematical statistics
الإحصاء الرياضي

Alpha-power family Burr X family value at risk Cramér-von Mises estimation mean residual life; Weibull distribution Marshall and Olkin family

519.5
Cairo University Libraries Portal Implemented & Customized by: Eng. M. Mohamady Contacts: new-lib@cl.cu.edu.eg | cnul@cl.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: new-lib@cl.cu.edu.eg © All rights reserved — New Central Library
CNUL logo
Implemented & Customized by: Eng. M. Mohamady Contact: cnul@cl.cu.edu.eg © All rights reserved — Cairo National University Library