Computer-Aided Multi-Label Retinopathy Diagnosis Via Inter-Disease Graph Regularization / (Record no. 170833)

MARC details
000 -LEADER
fixed length control field 05272namaa22004091i 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - أخر تعامل مع التسجيلة
control field 20250223033433.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250213s2024 |||a|||fr|m|| 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610.28
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 610.28
Edition number 21
097 ## - Degree
Degree M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01.13.03.M.Sc.2024.Ta.C
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Tasnim Samir Mohamed Elsayed,
Preparation preparation.
245 10 - TITLE STATEMENT
Title Computer-Aided Multi-Label Retinopathy Diagnosis Via Inter-Disease Graph Regularization /
Statement of responsibility, etc. by Tasnim Samir Mohamed Elsayed ; Under the Supervision of Dr. Muhammad Ali Rushdi
246 15 - VARYING FORM OF TITLE
Title proper/short title التشخيص متعدد التصنيفات المعضد بالحاسوب لأمراض شبكية العين باستخدام مخططات الارتباط بين الأمراض /
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2024.
300 ## - PHYSICAL DESCRIPTION
Extent 88 pages :
Other physical details illustrations ;
Dimensions 30 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc.)-Cairo University, 2024.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 74-88.
520 ## - SUMMARY, ETC.
Summary, etc. Computer-aided diagnosis (CAD) of retinal fundus diseases is crucial for effective<br/>treatment planning and avoidance of vision deterioration and loss. Most existing CAD<br/>systems are focused on learning to differentiate between retinal fundus diseases,<br/>assuming that diseases are independent and ignoring disease co-occurrences. In this<br/>thesis, we address this limitation in multi-label classification of retinal fundus diseases<br/>and introduce an end-to-end deep learning framework that accounts for label<br/>relationships via graph-theoretic regularization. Specifically, we trained a convolutional<br/>neural network for multi-label retinal disease classification. The training process for<br/>this network embeds the graph prior in a scalable neighbor discriminative loss with<br/>binary cross entropy (SNDL-BCE). The proposed model was validated through<br/>extensive experiments on the retinal fundus multi-disease image dataset (RFMiD). The<br/>model successfully detected the disease risk with area under the curve (AUC) of<br/>95.02% on the validation set and 95.8% on the test set. Furthermore, the model<br/>classified 28 different retinal fundus diseases with multi-disease score metric of 74.68%<br/>on the validation set and 73.99% on the test set. Overall, the model demonstrated a<br/>competitive performance with a final score of 84.85% on the validation set and 85% on<br/>the test set. Also, the model achieved an F1-score of 77.16% on the test data. In<br/>addition, gradient-weighted class activation map (Grad-CAM) visualization exhibited<br/>high explainability and plausibility for the outcomes of our model. Moreover, our<br/>model compares well with other state-of-the-art methods for retinal disease<br/>classification.
520 ## - SUMMARY, ETC.
Summary, etc. تشخيص أمراض قاع الشبكية بمساعدة الحاسوب أمر بالغ الأهمية لتخطيط العلاج الفعال وتجنب تدهور الرؤية وفقدانها. أغلب الأنظمة الحالية للتشخيص بالحاسوب تركز على تشخيص كل مرض شبكي بشكل مستقل، بينما تتجاهل علاقات ارتباط الأمراض ببعضها البعض. في هذه الرسالة، نناقش مشكلة التشخيص متعدد التصنيفات لأمراض شبكية قاع العين ونقدم إطارًا شاملًا باستخدام التعلم العميق أخذًا في الحسبان العلاقات بين الأمراض من خلال مخططات الارتباط بين الأمراض. على وجه التحديد، قمنا بتدريب شبكات عصبية تلافيفية لعمل تصنيف متعدد لحالات أمراض الشبكية. يتضمن تدريب هذه الشبكات مخططات الارتباط بين الأمراض المعلومة مُسبقًا والتى يتم دمجها فى دالة الفقد التمييزية القابلة للتطوير المعتمدة على الجيران مع دالة العشوائية الثنائية. تم التحقق من صحة النموذج المقترح من خلال تجارب مكثفة على مجموعة بيانات (RFMID2021). النموذج المقترح نجح في تحديد وجود المرض وتصنيف 28 مرضاً مختلفًا من أمراض شبكية قاع العين بدرجة إجمالية 85٪ في مجموعة الاختبار. أظهر نموذجنا قابلية عالية لتفسير النتائج ومعقوليتها مقارنةً مع أحدث الأساليب لتصنيف أمراض الشبكية.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issued also as CD
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in Arabic & English.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Biomedical Engineering and Systems
Source of heading or term qrmak
653 #0 - INDEX TERM--UNCONTROLLED
Uncontrolled term Multi-label classification
-- Graph regularization
-- Computer-aided diagnosis
-- Retinopathy
-- Deep learning
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Muhammad Ali Rushdi
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2024
Supervisory body Muhammad Ali Rushdi
Discussion body Manal Abdel Wahed
-- Mohamed Nagy Saad Elziftawy
Universities Cairo University
Faculties Faculty of Engineering
Department Department of Biomedical Engineering and Systems
905 ## - Cataloger and Reviser Names
Cataloger Name Eman Ghareeb
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 13.02.2025 90522 Cai01.13.03.M.Sc.2024.Ta.C 01010110090522000 13.02.2025 13.02.2025 Thesis
Cairo University Libraries Portal Implemented & Customized by: Eng. M. Mohamady Contacts: new-lib@cl.cu.edu.eg | cnul@cl.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: new-lib@cl.cu.edu.eg © All rights reserved — New Central Library
CNUL logo
Implemented & Customized by: Eng. M. Mohamady Contact: cnul@cl.cu.edu.eg © All rights reserved — Cairo National University Library