Recognition ofsome arabic syllables sets using deep neural networks / (Record no. 170871)

MARC details
000 -LEADER
fixed length control field 04173namaa22004451i 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - أخر تعامل مع التسجيلة
control field 20250303121434.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250216s2024 |||a|||f m||| 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610.28
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 610.28
Edition number 21
097 ## - Degree
Degree Ph.D
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01.13.03.Ph.D.2024.Da.R
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Dahlia Mohammad Ismail Omran,
Preparation preparation.
245 10 - TITLE STATEMENT
Title Recognition ofsome arabic syllables sets using deep neural networks /
Statement of responsibility, etc. by Dahlia Mohammad Ismail Omran ; Supervisors Prof. Ahmed Hisham Kandil, Prof. Ahmed Mohammed El-Bialy, Dr. Sherif Ahmed Sami.
246 15 - VARYING FORM OF TITLE
Title proper/short title التعرف على بعض مجموعات المقاطع اللفظية العربية باستخدام الشبكات العصبية العميقة /
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2024.
300 ## - PHYSICAL DESCRIPTION
Extent 63 pages :
Other physical details illustrations ;
Dimensions 30 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Thesis (Ph.D)-Cairo University, 2024.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 59-63.
520 ## - SUMMARY, ETC.
Summary, etc. This work focused on applying the Convolutional Neural Networks (CNN) to recognize some recitation rules of the Holy Quran, the Qalqalah rule which is applied to five letters of the Arabic Alphabet and it implies vibration of these letters when there is absence of vowels on them with Sukon, and Hams or Whisper rule which is applied to other ten letters of the Arabic alphabet and it implies breathing flow when pronouncing those letters. The used dataset consists of 4406 Quranic audios each of 500ms length which were extracted off continuous audio records for professional readers. Each sample represent one CVC, CVCC or CV:C Arabic syllables which contain one of Qalqalah or Hams sounds. The feature extraction technique used in the proposed system was the Mel Frequency Cepstral Coefficients (MFCC). Recognition process for Qalqalah achieved 93% accuracy while it achieved 91% for Hams rule.
520 ## - SUMMARY, ETC.
Summary, etc. ركز هذا العمل على تطبيق الشبكات العصبية التلافيفية (CNN) للتعرف على بعض قواعد تلاوة القرآن الكريم، وقاعدة القلقلة المطبقة على خمسة حروف من الأبجدية العربية وتعني اهتزاز هذه الحروف في حالة السكون. أما قاعدة الهمس والتي تنطبق على الحروف العشرة الأخرى من الأبجدية العربية و التي تتضمن تدفق التنفس عند نطق تلك الحروف. و تتكون مجموعة البيانات المستخدمة من 4406 مقطع صوتي قرآني طول كل منها 500 مللي ثانية تم استخراجها من التسجيلات الصوتية المستمرة لأربعة من القراء المحترفين. تمثل كل عينة مقطعًا لفظيًا عربيًا واحدًا من CVC أو CVCC أو CV:C يحتوي على أحد أصوات القلقلة أو الهمس. كانت تقنية استخراج المعالم المستخدمة في النظام المقترح هي معاملات (MFCC). وحققت عملية التعرف باستخدام الشبكة العصبية التلافيفية للقلقلة على دقة 93%، بينما حققت 91% لحكم الهمس.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issues also as CD.
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in Arabic & English.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Biomedical Engineering
Source of heading or term qrmak
653 #0 - INDEX TERM--UNCONTROLLED
Uncontrolled term Convolutional Neural Networks
-- MFCC
-- Recitation Rules
-- characteristics of Arabic letters
-- keyword spotting
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Ahmed Hisham Kandil
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Ahmed Mohammed El-Bialy
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Sherif Ahmed Sami
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2024
Supervisory body Ahmed Hisham Kandil
-- Ahmed Mohammed El-Bialy
-- Sherif Ahmed Sami
Discussion body Tamer Yousef Basha
-- Mohamed Aly El Dosouky
Universities Cairo University
Faculties Faculty of Engineering
Department Department of Biomedical Engineering and Systems
905 ## - Cataloger and Reviser Names
Cataloger Name Shimaa
905 ## - Cataloger and Reviser Names
Cataloger Name Eman Ghareeb
Reviser Names Revisor
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 16.02.2025 90681 Cai01.13.03.Ph.D.2024.Da.R 01010110090681000 16.02.2025 16.02.2025 Thesis
Cairo University Libraries Portal Implemented & Customized by: Eng. M. Mohamady Contacts: new-lib@cl.cu.edu.eg | cnul@cl.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: new-lib@cl.cu.edu.eg © All rights reserved — New Central Library
CNUL logo
Implemented & Customized by: Eng. M. Mohamady Contact: cnul@cl.cu.edu.eg © All rights reserved — Cairo National University Library