header

Use of Machine Learning In Weather Forecasting : (Record no. 171902)

MARC details
000 -LEADER
fixed length control field 04391namaa22004451i 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - أخر تعامل مع التسجيلة
control field 20250506121305.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250505s2024 ua a|||fr|m|| 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 500.5
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 500.5
Edition number 21
097 ## - Degree
Degree Ph.D
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01.12.01.Ph.D.2024.Mo.U.
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Moetasm Hashem ElTaweel,
Preparation preparation.
245 10 - TITLE STATEMENT
Title Use of Machine Learning In Weather Forecasting :
Remainder of title Application to Surface Wind /
Statement of responsibility, etc. By Moetasm Hashem ElTaweel; Under Supervision of Prof. Mohamed Magdy Abdel Wahab, Prof.ElSayed Mohamed AbdelHamed Robaa, Prof. Stéphane Alfaro, Dr.Guillaume Siour
246 15 - VARYING FORM OF TITLE
Title proper/short title استخدام التعلم الآلي في التنبؤ بالطقس:
Remainder of title تطبيق علي الرياح السطحية /
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2024.
300 ## - PHYSICAL DESCRIPTION
Extent 83 pages :
Other physical details illustrations ;
Dimensions 25 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Thesis (Ph.D)-Cairo University, 2024.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 60-80.
520 ## - SUMMARY, ETC.
Summary, etc. Accurate surface wind forecasts are crucial for sectors like energy production, <br/>yet traditional models face growing limitations. This thesis explores hybrid <br/>learning techniques, focusing on XGBoost (XGB) for machine learning and <br/>Long Short-Term Memory (LSTM) for deep learning, both tailored for time <br/>series prediction. Stage one uses the ERA5 database to evaluate tree-based <br/>algorithms for predicting wind speed and direction in Cairo, with XGBoost <br/>achieving an RMSE of 0.59 m/s and R² of 0.84. Stage two forecasts short-term <br/>wind speed evolution, showing excellent 1-hour predictions with an RMSE of <br/>0.35 m/s and R² of 0.98, though accuracy declines over longer horizons. Stage <br/>three utilizes LSTM for wind speed and direction prediction, achieving an RMSE <br/>of 0.30 and an R² of 0.98. These findings highlight the potential of hybrid <br/>models to revolutionize surface wind prediction and forecasting applications.
520 ## - SUMMARY, ETC.
Summary, etc. التنبؤات الدقيقة بسرعة الرياح السطحية ضرورية لقطاعات مثل إنتاج الطاقة، إلا أن النماذج التقليدية تواجه قيودًا متزايدة. تستكشف هذه الأطروحة تقنيات التعلم الهجين، مع التركيز على XGBoost (XGB) لتعلم الآلة و Long Short-Term Memory (LSTM) للتعلم العميق، وكلاهما مخصص لتنبؤ السلاسل الزمنية. تستخدم المرحلة الأولى قاعدة بيانات ERA5 لتقييم الخوارزميات القائمة على الأشجار لتنبؤ سرعة واتجاه الرياح في القاهرة، حيث حقق XGBoost RMSE بقيمة 0.59 م/ث و R² بقيمة 0.84. في المرحلة الثانية، يتم التنبؤ بتطور سرعة الرياح على المدى القصير، مما يظهر توقعات ممتازة لساعة واحدة مع RMSE بقيمة 0.35 م/ث و R² بقيمة 0.98، رغم أن الدقة تنخفض مع الفترات الزمنية الأطول. في المرحلة الثالثة، يتم استخدام LSTM لتنبؤ سرعة واتجاه الرياح، حيث حقق RMSE بقيمة 0.30 و R² بقيمة 0.98. تسلط هذه النتائج الضوء على إمكانيات النماذج الهجينة في إحداث ثورة في تطبيقات التنبؤ والتوقع بسرعات الرياح السطحية.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issued also as CD
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in Arabic & English.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Space Science
Source of heading or term qrmak
653 #0 - INDEX TERM--UNCONTROLLED
Uncontrolled term Surface wind forecasts
-- Hybrid learning techniques
-- Long Short-Term Memory (LSTM)
-- Time series prediction
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Mohamed Magdy AbdelWahab
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name ElSayed Mohamed AbdelHamed Robaa
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Stéphane Alfaro
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Guillaume Siour
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2024
Supervisory body Mohamed Magdy AbdelWahab
-- ElSayed Mohamed AbdelHamed Robaa
-- Stéphane Alfaro
-- Guillaume Siour
Universities Cairo University
Faculties Faculty of Science
Department Department of Astronomy, Space Science and Meteorology
905 ## - Cataloger and Reviser Names
Cataloger Name Nourhan
Reviser Names Eman Ghareb
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 05.05.2025 91101 Cai01.12.01.Ph.D.2024.Mo.U. 01010110091101000 05.05.2025 05.05.2025 Thesis
Under the supervision of New Central Library Manager

Implemented and Customized by: Eng.M.Mohamady
Contact:   info@cl.cu.edu.eg

© All rights reserved  New Central Library