A combined deep learning-regression paradigm for echocardiography-based left ventricle ejection fraction prediction / (Record no. 174695)

MARC details
000 -LEADER
fixed length control field 04486namaa22004331i 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - أخر تعامل مع التسجيلة
control field 20251019112405.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 251011s2025 ua a|||frm||| 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610.28
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 610.28
Edition number 21
097 ## - Degree
Degree M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01.13.03.M.Sc.2025.Ra.C
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Rahma Sayed Saad Elsayed,
Preparation preparation.
245 12 - TITLE STATEMENT
Title A combined deep learning-regression paradigm for echocardiography-based left ventricle ejection fraction prediction /
Statement of responsibility, etc. by Rahma Sayed Saad Elsayed ; Supervisors Prof. Manal Abdel Wahed, Prof. Neven Saleh.
246 15 - VARYING FORM OF TITLE
Title proper/short title نموذج مركب للتعلم العميق والانحدار لتوقع كسر القذف للبطين الأيسر المعتمد على تخطيط صدى القلب
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2025.
300 ## - PHYSICAL DESCRIPTION
Extent 64 pages :
Other physical details illustrations ;
Dimensions 30 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc)-Cairo University, 2025.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 61-64.
520 #3 - SUMMARY, ETC.
Summary, etc. With an emphasis on apical four-chamber views, this study improves cardiac function categorization and LVEF prediction from echocardiographic images using deep learning, machine learning, and regression techniques. Advanced convolutional neural networks were used to optimize feature representation, with ResNet-50 demonstrating the highest classification accuracy. The comprehensive feature representations were then integrated into both the Gaussian machine learning model and the Gaussian Process Regression model. For classification, the model achieved 89% accuracy and was then validated using a new dataset, achieving 87.88% accuracy. The regression model was constructed to predict ejection fraction values, yielding a high R-squared value of 0.92 and a high mean absolute error (MAE) of 1.32, and for the new dataset, the R-squared value of 0.88 and a high mean absolute error (MAE) of 3.563. The results underscore the effectiveness of enhanced feature extraction in advancing cardiac function assessment and addressing gaps in the literature.
520 #3 - SUMMARY, ETC.
Summary, etc. مع التركيز على مشاهد الأربع غرف القمية، تحسن هذه الدراسة تصنيف وظيفة القلب وتنبؤ كسر القذف البطيني الأيسر من صور الإيكو باستخدام تقنيات التعلم العميق، التعلم الآلي، وتقنيات الانحدار. تم استخدام الشبكات العصبية الالتفافية المتقدمة لتحسين تمثيل الميزات، حيث أظهر نموذج ResNet-50 أعلى دقة في التصنيف. تم دمج تمثيلات الميزات الشاملة في كل من نموذج التعلم الآلي باستخدام عملية جاوسية (Gaussian) ونموذج الانحدار باستخدام عملية جاوسية. في التصنيف، حقق النموذج دقة بلغت 89%، ثم تم التحقق من صحته باستخدام مجموعة بيانات جديدة، حيث تم الوصول إلى دقة 87.88%. تم بناء نموذج انحدار للتنبؤ بقيم كسر القذف، مما أسفر عن قيمة عالية لمعامل التحديد (R²) بلغت 0.92 وخطأ مطلق متوسط (MAE) قدره 1.32. أما بالنسبة لمجموعة البيانات الجديدة، فكانت قيمة R² تساوي 0.88، مع خطأ مطلق متوسط (MAE) قدره 3.563. تؤكد النتائج فعالية تحسين استخراج الميزات في تحسين تقييم وظيفة القلب ومعالجة الفجوات في الادبيات.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issues also as CD.
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in Arabic & English.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Biomedical Engineering
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element الهندسة الحيوية الطبية
653 #1 - INDEX TERM--UNCONTROLLED
Uncontrolled term Echocardiography
-- Left ventricle ejection fraction
-- Deep learning
-- Machine learning
-- Regression model
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Manal Abdel Wahed
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Neven Saleh
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2025
Supervisory body Manal Abdel Wahed
-- Neven Saleh
Discussion body Ahmed Hisham Kandil
-- Khaled Mostafa El Sayed
Universities Cairo University
Faculties Faculty of Engineering
Department Department of Biomedical Engineering and Systems
905 ## - Cataloger and Reviser Names
Cataloger Name Shimaa
Reviser Names Eman Ghareb
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 11.10.2025 92128 Cai01.13.03.M.Sc.2025.Ra.C 01010110092128000 11.10.2025 11.10.2025 Thesis
Cairo University Libraries Portal Implemented & Customized by: Eng. M. Mohamady Contacts: new-lib@cl.cu.edu.eg | cnul@cl.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: new-lib@cl.cu.edu.eg © All rights reserved — New Central Library