Predicting the compressive strength of ultra-high-performance concrete using machine learning and deep learning techniques / (Record no. 175471)

MARC details
000 -LEADER
fixed length control field 03545namaa22004211i 4500
003 - CONTROL NUMBER IDENTIFIER
control field EG-GICUC
005 - أخر تعامل مع التسجيلة
control field 20251103145629.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 251103s2025 ua a|||frm||| 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 624.1834
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 624.1834
Edition number 21
097 ## - Degree
Degree M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01.13.05.M.Sc.2025.Ah.P
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Ahmed Tamer Abd El-Rahman El-Nasser,
Preparation preparation.
245 10 - TITLE STATEMENT
Title Predicting the compressive strength of ultra-high-performance concrete using machine learning and deep learning techniques /
Statement of responsibility, etc. by Ahmed Tamer Abd El-Rahman El-Nasser ; Supervisors Prof. Dr. Mohamed I. Serag.
246 15 - VARYING FORM OF TITLE
Title proper/short title التنبؤ بمقاومة الضغط للخرسانة فائقة الاجهاد باستخدام تقنيات التعلم الآلي والتعلم العميق
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2025.
300 ## - PHYSICAL DESCRIPTION
Extent 162 pages :
Other physical details illustrations ;
Dimensions 30 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc)-Cairo University, 2025.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 157-162.
520 #3 - SUMMARY, ETC.
Summary, etc. This study highlights Ultra-High-Performance Concrete (UHPC) as a distinguished engineering innovation, leveraging machine learning (ML) and deep learning (DL) techniques to accurately predict compressive strength. Using a filtered dataset of 810 samples, the CatBoost algorithm demonstrated superior performance with an R² of 96.57%, while the Artificial Neural Network (ANN) model achieved an R² of 92.87%. The study revealed that ML models outperformed in efficiency and error metrics, whereas ANN showed sensitivity to minor changes. The findings included sensitivity analysis to identify influential factors and optimized mix designs using predictive models, offering an innovative and sustainable approach to enhancing UHPC.
520 #3 - SUMMARY, ETC.
Summary, etc. تسلط هذه الدراسة الضوء على الخرسانة فائقة الأداء (UHPC) كابتكار هندسي متميز، مستفيدة من تقنيات التعلم الآلي (ML) والتعلم العميق (DL) للتنبؤ بمقاومة الضغط بدقة. باستخدام بيانات مفلترة لـ 810 عينات، أظهرت خوارزمية CatBoost أداءً متفوقًا بنسبة R² بلغت96.57 %، بينما حقق نموذج الشبكة العصبية الاصطناعية (ANN) R² بنسبة92.87 %. كشفت الدراسة أن نماذج ML تفوقت في الكفاءة ومقاييس الخطأ، بينما أظهر ANN حساسية للتغيرات الطفيفة. تضمنت النتائج تحليل الحساسية لتحديد العوامل المؤثرة وتصميم خلطات محسنة باستخدام النماذج التنبؤية، مما يوفر نهجًا مبتكرًا ومستدامًا لتحسين UHPC.وتحسينًا.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issues also as CD.
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in Arabic & English.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element High strength concrete
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element الخرسانة عالية القوة
653 #1 - INDEX TERM--UNCONTROLLED
Uncontrolled term Ultra-High-Performance Concrete
-- Machine Learning
-- Deep Learning
-- Compressive Strength
-- Prediction
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Mohamed I. Serag
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2025
Supervisory body Mohamed I. Serag
Discussion body Osama A. Hodhod
-- Sayed M. Ahmed
Universities Cairo University
Faculties Faculty of Engineering
Department Department of Structural Engineering
905 ## - Cataloger and Reviser Names
Cataloger Name Shimaa
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 03.11.2025 92349 Cai01.13.05.M.Sc.2025.Ah.P 01010110092349000 03.11.2025 03.11.2025 Thesis
Cairo University Libraries Portal Implemented & Customized by: Eng. M. Mohamady Contacts: new-lib@cl.cu.edu.eg | cnul@cl.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: new-lib@cl.cu.edu.eg © All rights reserved — New Central Library
CNUL logo
Implemented & Customized by: Eng. M. Mohamady Contact: cnul@cl.cu.edu.eg © All rights reserved — Cairo National University Library