Maximizing efficiency of energy consumption forecasting using a machine learning approach / (Record no. 175579)

MARC details
000 -LEADER
fixed length control field 07207namaa22004451i 4500
003 - CONTROL NUMBER IDENTIFIER
control field EG-GICUC
005 - أخر تعامل مع التسجيلة
control field 20251106165026.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 251106s2024 ua a|||frm||| 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.31
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 006.31
Edition number 21
097 ## - Degree
Degree Ph.D
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01.18.05.Ph.D.2024.Mo.M
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Mohamed Mohamed Ramadan Ali Alsoul,
Preparation preparation.
245 10 - TITLE STATEMENT
Title Maximizing efficiency of energy consumption forecasting using a machine learning approach /
Statement of responsibility, etc. by Mohamed Mohamed Ramadan Ali Alsoul ; Supervised Prof. Hegazy Mohamed Zaher, Prof. Naglaa Ragaa Saeid Hassan, Dr. Eman Mostafa Ahmed.
246 15 - VARYING FORM OF TITLE
Title proper/short title تعظيم كفاءة التنبؤ لاستهلاك الطاقة باستخدام منهجية تعلم الآله
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2024.
300 ## - PHYSICAL DESCRIPTION
Extent 91 Leaves :
Other physical details illustrations ;
Dimensions 30 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Thesis (Ph.D)-Cairo University, 2024.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 85-91.
520 #3 - SUMMARY, ETC.
Summary, etc. Optimization extensively applied in various disciplines, ranging from engineering, computer science, finance, and decision-making. It is widely regarded as a fundamental technique with diverse applications. In the context of engineering and industry, optimization is employed to reduce costs and energy consumption or to maximize profits, output, performance and efficiency.<br/>Household energy consumption patterns are constantly evolving influenced by variables such as temperature, humidity and time of day. Predicting how much energy each family uses is really hard because everyone uses energy in different ways. Smart meters and home displays are on the rise. <br/>In this thesis, it was applied machine learning models for energy consumption in household and commercial sector, with a specific focus on identifying potential optimizations to reduce energy usage and maximize its efficiency, sustainability and preservation. With the emergence of machine learning, the ability to accurately predict future energy consumption has significantly reached applying two kinds of machine learning models. Computational intelligence methods showed better accuracy than statistical methods, especially for parameters with greater variability in source data. Thus, this thesis introduced two suggested models:<br/>The first model is about "Optimizing Homes Energy Consumption Utilization Using H-R Predictor" which it was applied using REFIT data collected from UK household smart meters to analyze energy consumption. <br/>The suggested prediction H-R algorithm is one of achievements of this thesis which it included two suggested unsupervised machine learning models (LSTM and XGBoost) to train data for forecasting and controlling the energy consumption. The performance of these models was evaluated using R2 as a metric to measure the percentage of variance in the dependent variable that can be predicted.<br/><br/>The second model is about "A hybrid Firefly based Gravity Search Algorithm (F-GSA) for Optimizing Energy Consumption". The proposed model was developed to forecast the energy consumption in homes.<br/>Hybrid firefly-based Gravity Search Algorithm (F-GSA) enhance energy consumption predictions by combining strengths, providing efficient projections and historical data insights, offering a promising solution for tackling energy consumption forecasting challenges.<br/>The research models were assessed using root mean squared error (RMSE), mean absolute deviation (MAD) and R-Squared (R²), also known as the coefficient of determination, in order to directly compare them to the energy readings in the data. MAD is utilized to quantify the error in predicting energy consumption in 10-minute intervals (equivalent to six errors per hour). On the other hand, R² is employed to evaluate the overall performance of the models in predicting energy consumption over a specific time period, such as a day or month.
520 #3 - SUMMARY, ETC.
Summary, etc. يتم تطبيق الأمثلية (Optimization) على نطاق واسع في مختلف التخصصات مثل الإقتصاد والهندسة وعلوم الكمبيوتر والمصارف المالية وغيرها بهدفتعظيم الربحية أو تقليل التكاليف والمخاطر أو المزيج بين كلاهما. وتتضمن الامثلية تطبيقات متنوعة ومعقدة ومن ثم تحتوي على عدد كبير من المعلمات (Parameters) هكذا يصعب حل مثل هذه المشكلات بالطرق التقليدية. تقدم خوارزميات التعلم الآلي ML وخوارزميات Metaheuristic حلول جيدة وفعالة قريبة من المثالية من خلال البحث بذكاء فى مساحة الحل لتلك الأنواع من المشكلات.<br/>ومع تطور أنماط استهلاك الطاقة المنزلية باستمرار متأثرة بمتغيرات مثل درجة الحرارة والرطوبة خلال فترات اليوم أو خلال الفترات الموسمية يعتبر التنبؤ بكمية الطاقة التي تستخدمها كل أسرة أمرًا صعبًا لأن الجميع يستخدم الطاقة بطرق مختلفة. يهدف هذا البحث إلى استكشاف مجال استهلاك الطاقة الكهربائية في القطاع المنزلي والتجاري من خلال التعلم الآلي (ML) مع التركيز بشكل خاص على تحديد التحسينات المحتملة لتقليل استخدام الطاقة وتعظيم كفاءتها واستدامتها والحفاظ عليها. <br/>مع ظهور طرق التعلم الآلي واستخدام العدادات الذكية (Smart meters) تحسنت القدرة على التنبؤ باستهلاك الطاقة في المستقبل بدقة عالية وبشكل كبير نتيجه استخدام طرق الذكاء الإصطناعى وتعلم الالة لتدريب النماذج عليها واستخدامها كأداه قوية للتنبؤ حيث تظهر طرق الذكاء الاصطناعى دقة أفضل من الطرق الإحصائية التقليدية وخاصة بالنسبة للمعلمات ذات التباين الأكبر في بيانات المصدر
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issues also as CD.
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in Arabic & English.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Machine learning
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element تعلم الآله
653 #1 - INDEX TERM--UNCONTROLLED
Uncontrolled term Energy Consumption Forecasting
-- Machine Learning Models
-- Predictive Analytics
-- Time Series Analysis
-- Feature Engineering
-- Data Preprocessing
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Hegazy Mohamed Zaher
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Naglaa Ragaa Saeid Hassan
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Eman Mostafa Ahmed
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2024
Supervisory body Hegazy Mohamed Zaher
-- Naglaa Ragaa Saeid Hassan
-- Eman Mostafa Ahmed
Universities Cairo University
Faculties Faculty of Graduate Studies for Statistical Research
Department Department of Operations Research & Management
905 ## - Cataloger and Reviser Names
Cataloger Name Shimaa
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 06.11.2025 92377 Cai01.18.05.Ph.D.2024.Mo.M 01010110092377000 06.11.2025 06.11.2025 Thesis
Cairo University Libraries Portal Implemented & Customized by: Eng. M. Mohamady Contacts: new-lib@cl.cu.edu.eg | cnul@cl.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: new-lib@cl.cu.edu.eg © All rights reserved — New Central Library
CNUL logo
Implemented & Customized by: Eng. M. Mohamady Contact: cnul@cl.cu.edu.eg © All rights reserved — Cairo National University Library