Transforming hopfield networks into high-performance machine learning classifiers for computational efficiency / (Record no. 176905)

MARC details
000 -LEADER
fixed length control field 04272namaa22004331i 4500
003 - CONTROL NUMBER IDENTIFIER
control field EG-GICUC
005 - أخر تعامل مع التسجيلة
control field 20251222101523.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 251221s2025 ua a|||frm||| 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.3
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 621.3
Edition number 21
097 ## - Degree
Degree M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01.13.08.M.Sc.2025.Mo.T
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Mohamed Abdelkarim Shaban Omar,
Preparation preparation.
245 10 - TITLE STATEMENT
Title Transforming hopfield networks into high-performance machine learning classifiers for computational efficiency /
Statement of responsibility, etc. by Mohamed Abdelkarim Shaban Omar ; Supervisors Prof. Dr. Hanan Ahmed Kamal, Prof. Dr. Doaa Mohamed Shawky.
246 15 - VARYING FORM OF TITLE
Title proper/short title ﺘﺤوﻴﻝ ﺸﺒﻛﺎت ﻫوﺒﻔﻴﻠد إﻟﻰ ﻤﺼﻨﻔﺎت ﺘﻌﻠم آﻟﻲ ﻋﺎﻟﻴﺔ اﻷداء ﻟﺘﺤﻘﻴق اﻟﻛﻔﺎءة اﻟﺤﺎﺴوﺒﻴﺔ /
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2025.
300 ## - PHYSICAL DESCRIPTION
Extent 84 pages :
Other physical details illustrations ;
Dimensions 30 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc)-Cairo University, 2025.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 79-84.
520 #3 - SUMMARY, ETC.
Summary, etc. State-of-the-art classification neural networks, complex and multi-layered, demand sig-<br/>nificant energy and computational resources. In contrast, the Hopfield Neural Network<br/>(HNN) is a simpler, single-layer network, emulating the human associative memory net-<br/>work (AM). This makes HNN efficient for tasks like image processing and pattern recog-<br/>nition, consuming less time and power. Its compatibility with oscillatory neural networks<br/>(ONNs) suits it for machine learning applications in IoT and big data contexts. Notably,<br/>HNN is typically used as AM rather than a classifier. This work introduces an advanced<br/>HNN classifier, versatile across various datasets, including images. With minimal train-<br/>ing time, it’s ideal for resource-limited environments. This HNN classifier sets a new<br/>benchmark in classification, achieving a 96% test accuracy on the MNIST dataset, a 36%<br/>improvement over previous HNN classifiers, marking a notable achievement in machine<br/>learning.
520 #3 - SUMMARY, ETC.
Summary, etc. الشبكات العصبية الحديثة للتصنيف تعتمد على التراجع التدريجي أثناء التدريب وتستهلك موارد كبيرة، بينما تُعد شبكة هوبفيلد العصبية (HNN) أبسط بتصميمها كشبكة ذات طبقة واحدة وأوزان متماثلة، مما يحاكي الذاكرة الترابطية البيولوجية البشرية. تُستخدم HNN عادةً كذاكرة ترابطية لتخزين واسترجاع البيانات، وتتميز ببساطتها واحتياجها الأقل للموارد، مع إمكانية تنفيذها على الأجهزة باستخدام الشبكات العصبية التذبذبية (ONNs). يقدم العمل الحالي مُصنفًا جديدًا يعتمد على HNN مستوحى من إكمال الأنماط البيولوجية، ويدعم مجموعات بيانات متنوعة مع وقت تدريب متناهي الصغر. يحقق المُصنف دقة 96% على بيانات MNIST، متفوقًا بنسبة 36% على المصنفات السابقة، مع أسرع وقت تدريب وأقل تعقيد حسابي، مما يجعله خيارًا رائدًا في تصنيف البيانات.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issues also as CD.
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in Arabic & English.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Electrical engineering
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element هندسة الإلكترونيات
653 #1 - INDEX TERM--UNCONTROLLED
Uncontrolled term Hopfield neural network
-- Image classification
-- Single layer network
-- oscillatory neural network
-- ML
-- AI
-- شبكة هوبفيلد العصبية
-- تصنيف الصور
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Hanan Ahmed Kamal
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Doaa Mohamed Shawky
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2025
Supervisory body Hanan Ahmed Kamal
-- Doaa Mohamed Shawky
Discussion body Omar Ahmed Ali Nasr
-- Heba Ahmed Abdelsalam Elnemr
Universities Cairo University
Faculties Faculty of Engineering
Department Department of Electronics and Electrical Communications Engineering
905 ## - Cataloger and Reviser Names
Cataloger Name Shimaa
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 21.12.2025 92879 Cai01.13.08.M.Sc.2025.Mo.T 01010110092879000 21.12.2025 21.12.2025 Thesis
Cairo University Libraries Portal Implemented & Customized by: Eng. M. Mohamady Contacts: new-lib@cl.cu.edu.eg | cnul@cl.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: new-lib@cl.cu.edu.eg © All rights reserved — New Central Library
CNUL logo
Implemented & Customized by: Eng. M. Mohamady Contact: cnul@cl.cu.edu.eg © All rights reserved — Cairo National University Library