Intrusion detection system for software defined networking based on deep learning approaches / (Record no. 177048)

MARC details
000 -LEADER
fixed length control field 07354namaa22004331i 4500
003 - CONTROL NUMBER IDENTIFIER
control field EG-GICUC
005 - أخر تعامل مع التسجيلة
control field 20251227100939.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 251226s2025 ua a|||frm||| 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.31
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 006.31
Edition number 21
097 ## - Degree
Degree M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01.20.01.M.Sc.2025.Ma.I
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Mahmoud Sami Ataa,
Preparation preparation.
245 10 - TITLE STATEMENT
Title Intrusion detection system for software defined networking based on deep learning approaches /
Statement of responsibility, etc. by Mahmoud Sami Ataa ; Supervised Prof. Reda A. El-khoribi, Dr. Eman E. Sanad.
246 15 - VARYING FORM OF TITLE
Title proper/short title نظام كشف التسلل إلى الشبكات المعرفة بالبرمجيات على نهج التعلم العميق
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2025.
300 ## - PHYSICAL DESCRIPTION
Extent 103 Leaves :
Other physical details illustrations ;
Dimensions 30 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc)-Cairo University, 2025.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 99-103.
520 #3 - SUMMARY, ETC.
Summary, etc. Ensuring robust network security is crucial in the context of Software-<br/>Defined Networking (SDN), which has become a multi -billion-dollar <br/>industry and is widely deployed in modern data centers. SDN provides <br/>network programmability, centralized control, and a global network view, <br/>offering significant advantages over traditional networks. However, these <br/>benefits come with new vulnerabilities and attack vectors, making SDN <br/>security a critical research area. The emergence of Machine Learning (ML) <br/>and, more specifically, Deep Learning (DL) has led to innovative approaches <br/>to securing SDN environments. <br/>This research focuses on developing an advanced Deep Learning -based <br/>Intrusion Detection System (IDS) to address SDN -specific attack vectors. <br/>We designed and evaluated two IDS models, a hybrid CNN-LSTM <br/>architecture and a Transformer encoder-only architecture. The IDS targets <br/>the SDN controller, a crucial component of the network that, if compromised, <br/>could lead to severe security breaches. The InSDN dataset was used for <br/>training and testing, as it accurately captures real -world SDN traffic. For <br/>evaluation, we employed accuracy, precision, recall, and F1-score as key <br/>metrics. Experimental results demonstrated that the Transformer model with <br/>48 features achieved the highest accuracy of 99.02%, while the CNN -LSTM <br/>model closely followed with 99.01%. <br/>To optimize the IDS for real-world deployment, we reduced the feature <br/>set to 6 and 4 features, assessing the impact on performance. Additionally, <br/>we addressed the poor representation of certain attack types by merging four <br/>underrepresented attacks into a single class, significantly improving <br/>classification accuracy. Furthermore, we explored binary classification, <br/>where all attack types were combined into a single attack class, resulting in <br/>higher accuracy for both models. Notably, the CNN-LSTM model achieved <br/>the best results with 6 features, reaching an accuracy of 99. 19% and a 99.49% <br/>F1-score, surpassing state-of-the-art results. <br/>Beyond model evaluation, we assessed the IDS’s impact on SDN <br/>network performance by analyzing key metrics such as latency, throughput, <br/>CPU, and memory usage. The findings indicate that while the CNN -LSTM-<br/>based IDS introduced a slight increase in latency of 0.016 ms, a marginal <br/>decrease in throughput of approximately 100 kBps, and minimal resource <br/>consumption, 5% CPU and 1% memory increase, we also developed a <br/>Transformer-based IDS that exhibited a higher computational impact. This <br/>second IDS resulted in a 0.004 ms increase in latency, a 31 kBps decrease in <br/>throughput, a 25% increase in CPU usage, and a 3% increase in memory <br/>usage. These results highlight the tr ade-off between model complexity and <br/>network performance. While both IDS solutions effectively detect intrusions, <br/>the CNN-LSTM model offers a more lightweight implementation compared <br/>to the Transformer-based IDS, which provides more sensitive detection <br/>capabilities with higher resource consumption.
520 #3 - SUMMARY, ETC.
Summary, etc. تُعَدّ أمان الشبكات أمرًا بالغ الأهمية في الشبكات المعرفة بالبرمجيات (SDN)، وهي صناعة سريعة النمو تُقدَّر بمليارات الدولارات وتُستخدم على نطاق واسع في الشبكات الحديثة ومراكز البيانات. يوفر التحكم المركزي والرؤية الشاملة للشبكة في SDN مزايا واضحة مقارنة بالشبكات التقليدية، لكنها تُدخل أيضًا نقاط ضعف جديدة. لمواجهة هذه التحديات، لجأ الباحثون إلى تقنيات التعلم الآلي، وبشكل خاص التعلم العميق (DL)، لتأمين بنية SDN التحتية.في هذه الدراسة، تم تطوير نظامي كشف تسلل (IDS) متقدمين يعتمدان على التعلم العميق: أحدهما مزيج بين الشبكات الالتفافية (CNN) وذاكرة المدى الطويل القصير (LSTM)، والآخر يعتمد على نموذج المحول (Transformer) باستخدام طبقات التشفير فقط. تستهدف هذه الأنظمة وحدة التحكم في SDN، وهي مكون حرج ومعرض للهجمات، باستخدام مجموعة بيانات InSDN لمحاكاة حركة المرور الواقعية.ولتكييف هذه الأنظمة للاستخدام الفعلي، تم تقليص عدد السمات المستخدمة من 48 (المجموعة الكاملة) إلى 6 و4 سمات فقط. كما تم دمج أنواع الهجمات قليلة التمثيل لتحسين دقة التصنيف، وساهم التصنيف الثنائي في تعزيز الأداء من خلال تبسيط عملية الكشف عن الهجمات.حقق نموذج CNN-LSTM أداءً متميزًا باستخدام 6 سمات فقط، إذ وصلت دقته إلى 99.19% و 99.49% على مقياس F1، وهو ما يُعد من أفضل النتائج في هذا المجال. وفي التقييم النهائي للأداء، تبين أن نموذج Transformer يتمتع بحساسية كشف أعلى، لكن نموذج CNN-LSTM قدّم توازنًا أفضل من حيث تقليل التأثير على زمن الاستجابة، وسرعة المعالجة، واستهلاك الموارد.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issues also as CD.
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in Arabic & English.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Deep learning
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element التعلم العميق
653 #1 - INDEX TERM--UNCONTROLLED
Uncontrolled term Software-defined networks
-- Cybersecurity
-- Intrusion detection system
-- Deep learning
-- Convolutional neural networks model
-- Long short term memory model
-- transformer model
-- الشبكات المعرفة بالبرمجيات
-- الامن السيبرانى
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Reda A. El-khoribi
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Eman E. Sanad
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2025
Supervisory body Reda A. El-khoribi
-- Eman E. Sanad
Universities Cairo University
Faculties Faculty of Computers and Artificial Intelligence
Department Department of Information Technology
905 ## - Cataloger and Reviser Names
Cataloger Name Shimaa
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 26.12.2025 92934 Cai01.20.01.M.Sc.2025.Ma.I 01010110092934000 26.12.2025 26.12.2025 Thesis
Cairo University Libraries Portal Implemented & Customized by: Eng. M. Mohamady Contacts: new-lib@cl.cu.edu.eg | cnul@cl.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: new-lib@cl.cu.edu.eg © All rights reserved — New Central Library
CNUL logo
Implemented & Customized by: Eng. M. Mohamady Contact: cnul@cl.cu.edu.eg © All rights reserved — Cairo National University Library