An improved gaining-sharing knowledge based algorithm to solve optimization problems / (Record no. 178315)

MARC details
000 -LEADER
fixed length control field 06539namaa22004331i 4500
003 - CONTROL NUMBER IDENTIFIER
control field EG-GICUC
005 - أخر تعامل مع التسجيلة
control field 20260209151412.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 260209s2025 ua a|||frm||| 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 658.4034
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 658.4034
Edition number 21
097 ## - Degree
Degree Ph.D
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01.18.05.Ph.D.2025.Mo.I
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Mohammed Adnan Jawad AL-Azzawi,
Preparation preparation.
245 13 - TITLE STATEMENT
Title An improved gaining-sharing knowledge based algorithm to solve optimization problems /
Statement of responsibility, etc. by Mohammed Adnan Jawad AL-Azzawi ; Supervised Prof. Ali Wagdy Mohamed, Dr. Heba Sayed Mohamed Roshdy.
246 15 - VARYING FORM OF TITLE
Title proper/short title خوارزمية محسنة إكتساب ومشاركة المعرفة لحل مشاكل الامثلية
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2025.
300 ## - PHYSICAL DESCRIPTION
Extent 153 Leaves :
Other physical details illustrations ;
Dimensions 30 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Thesis (Ph.D)-Cairo University, 2025.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 137-153
520 #3 - SUMMARY, ETC.
Summary, etc. In recent times, the Gaining-Sharing Knowledge-based algorithm (GSK) has arguably been one of the most powerful and versatile evolutionary optimizers for continuous parameter spaces, drawing inspiration from the ways humans acquire and exchange knowledge. Its various improvements and modifications set it apart as a strong contender in the realm of metaheuristic optimization algorithms. This thesis presents an enhanced version of the Gaining-Sharing Knowledge-based algorithm (eGSK) to solve optimization problems that don't have limits in a continuous space. This algorithm is based on adaptive methods that aim to mitigate the problem of premature convergence during the search process. The modification is fundamentally inspired by the principles of Adjust Selection Criteria, Modify Parameters Setup, and Escape from Local Minimum Solution, respectively. We conducted comparisons and statistical tests with the GSK and other algorithms to verify and analyze the performance of the eGSK algorithm. It was done by performing numerical experiments on 29 test problem sets in 10, 30, 50, and 100 dimensions from the Congress on Evolutionary Computation (CEC) 2017 benchmark. The results were compared with three GSK variant algorithms, seven state-of-the-art algorithms, and GSK alongside components of the eGSK algorithm. According to test results, the eGSK algorithm performs exceptionally well at solving optimization problems with 30, 50, and 100 dimensions and is competitive in 10 dimensions. Finally, the eGSK algorithm has been applied to solve a set of 22 real-world optimization problems from the CEC 2011. The results were compared with 14 state-of-the-art algorithms. The eGSK provided more effective solutions for real-world optimization problems, ultimately ranking as the top optimizer with superior performance compared to other algorithms. Therefore, this means the proposed eGSK algorithm outperforms its competitors and achieves more competitive results, especially with high-dimensional problems.
520 #3 - SUMMARY, ETC.
Summary, etc. في الآونة الأخيرة، تُعدّ خوارزمية اكتساب المعرفة ومشاركتها (GSK) من أقوى وأكثر الخوارزميات التطورية تنوعًا في فضاءات المعلمات المتصلة، مستلهمة من طرق اكتساب البشر للمعرفة وتبادلها. وتتميز بتحسيناتها وتعديلاتها المتنوعة كمنافس قوي في مجال خوارزميات التحسين الاستدلالي. تُقدّم هذه الرسالة نسخة مُحسّنة من خوارزمية اكتساب المعرفة ومشاركتها (eGSK) لحل مسائل التحسين غير المقيدة في فضاءات المعلمات المتصلة. تعتمد هذه الخوارزمية على أساليب تكيفية تهدف إلى التخفيف من مشكلة التقارب المبكر أثناء عملية البحث. تستلهم هذه التعديلات أساسًا من مبادئ "ضبط معايير الاختيار"، و"تعديل إعدادات المعلمات"، و"الهروب من الحد الأدنى المحلي للحل"، على التوالي. أجرينا مقارنات واختبارات إحصائية مع خوارزمية GSK وخوارزميات أخرى للتحقق من أداء خوارزمية eGSK. تم ذلك من خلال إجراء تجارب عددية على 29 مجموعة من مشاكل الاختبار في 10 و30 و50 و100 بُعد من معيار مؤتمر الحوسبة التطورية (CEC) 2017. تمت مقارنة النتائج بثلاث خوارزميات متغيرة من GSK وسبع خوارزميات متطورة وGSK إلى جانب مكونات خوارزمية eGSK. وفقًا لنتائج الاختبار، تعمل خوارزمية eGSK بشكل جيد للغاية في حل مشاكل التحسين ذات الأبعاد 30 و50 و100 وهي تنافسية في 10 أبعاد. أخيرًا، كما تم تطبيق خوارزمية eGSK لحل مجموعة من 22 مشكلة تحسين واقعية من CEC 2011. تمت مقارنة النتائج بـ 14 خوارزمية متطورة. قدمت eGSK حلولاً أكثر فعالية لمشاكل التحسين الواقعية، واحتلت في النهاية المرتبة الأولى كأفضل مُحسِّن بأداء متفوق مقارنة بالخوارزميات الأخرى. وبالتالي، فإن هذا يعني أن خوارزمية eGSK المقترحة تتفوق على منافسيها وتحقق نتائج أكثر تنافسية، خاصة مع المشاكل ذات الأبعاد العالية.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issues also as CD.
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in Arabic & English.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Operations Research and Management
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element بحوث وإدارة العمليات
653 #1 - INDEX TERM--UNCONTROLLED
Uncontrolled term Human-related techniques
-- Optimal solutions,
-- Meta-heuristics
-- Optimizations
-- Gaining-Sharing knowledge-based algorithm
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Ali Wagdy Mohamed
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Heba Sayed Mohamed Roshdy
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2025
Supervisory body Ali Wagdy Mohamed
-- Heba Sayed Mohamed Roshdy
Universities Cairo University
Faculties Faculty of Graduate Studies for Statistical Research
Department Department of Operations Research and Management
905 ## - Cataloger and Reviser Names
Cataloger Name Shimaa
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 09.02.2026 93325 Cai01.18.05.Ph.D.2025.Mo.I 01010110093325000 09.02.2026 09.02.2026 Thesis
Cairo University Libraries Portal Implemented & Customized by: Eng. M. Mohamady Contacts: new-lib@cl.cu.edu.eg | cnul@cl.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: new-lib@cl.cu.edu.eg © All rights reserved — New Central Library
CNUL logo
Implemented & Customized by: Eng. M. Mohamady Contact: cnul@cl.cu.edu.eg © All rights reserved — Cairo National University Library