The effect of ai and big data analytics on improving cyber vulnerabilities management in critical infrastructure / (Record no. 178321)

MARC details
000 -LEADER
fixed length control field 06672namaa22004331i 4500
003 - CONTROL NUMBER IDENTIFIER
control field EG-GICUC
005 - أخر تعامل مع التسجيلة
control field 20260209155945.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 260209s2025 ua a|||frm||| 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 658.404076
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 658.404076
Edition number 21
097 ## - Degree
Degree Ph.D
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01.18.06.Ph.D.2025.Ma.E
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Mahmoud Kamal Eldin Elsayed Said Bakhaty,
Preparation preparation.
245 14 - TITLE STATEMENT
Title The effect of ai and big data analytics on improving cyber vulnerabilities management in critical infrastructure /
Statement of responsibility, etc. by Mahmoud Kamal Eldin Elsayed Said Bakhaty ; Supervision Prof. Dr. Essam Ali Amin, Dr. Mohamed Abdulla Ewees.
246 15 - VARYING FORM OF TITLE
Title proper/short title تأثير الذكاء الإصطناعى وتحليل البيانات الضخمة على تحسين إدارة الثغرات السيبرانية للبنية التحتية الحرجة
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2025.
300 ## - PHYSICAL DESCRIPTION
Extent 81 Leaves :
Other physical details illustrations ;
Dimensions 30 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Thesis (Ph.D)-Cairo University, 2025.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 74 -77.
520 #3 - SUMMARY, ETC.
Summary, etc. In the contemporary digital landscape, effective cyber vulnerability management (VM) is critical <br/>for safeguarding Critical Infrastructure (CI) against evolving cyber threats. This study introduces <br/>a sophisticated Decision Support System (DSS) that integrates Big Data Analytics (BDA) and <br/>Artificial Intelligence (AI), including Natural Language Processing (NLP) and Named Entity <br/>Recognition (NER), to revolutionize VM practices. By leveraging tailored VM methodologies <br/>and a custom dataset representing organizational assets, the proposed DSS delivers actionable <br/>insights through interactive dashboards, ensuring accurate vulnerability identification and timely <br/>mitigation. The system's AI model demonstrates exceptional performance, with a precision score <br/>of 95.39%, recall of 96.55%, and an F-score of 95.97%, reflecting its capability to identify <br/>vulnerabilities accurately while minimizing false positives and overlooked threats. The DSS <br/>dynamically adapts to organizational environments, enhancing interoperability across <br/>heterogeneous data formats and incorporating insights from diverse sources. These capabilities <br/>enable organizations to optimize security operations, improve risk management, and strengthen <br/>cyber resilience. The research methodology included a comprehensive survey involving 72 <br/>cybersecurity experts. Participants engaged with the system through hands-on demonstrations <br/>and detailed exploration, followed by a Likert-scale evaluation. The survey findings validated the <br/>system’s effectiveness, confirming four key hypotheses: (H1) VM implementation positively <br/>impacts CI cybersecurity, (H2) AI and BDA improve VM time efficiency, (H3) AI and BDA <br/>reduce VM costs, and (H4) AI and BDA enhance VM quality. The results emphasize the critical <br/>role of AI and BDA in delivering faster, more accurate, and cost-effective vulnerability <br/>identification and mitigation. Beyond improving VM processes, the DSS addresses broader <br/>organizational needs, including optimizing human resources, supporting informed procurement <br/>decisions, and improving risk management in multi-project environments. These align with <br/>principles of Strategic Alignment, Resource Optimization, and Performance Measurement, <br/>further demonstrating the system’s practical value. This study contributes to the emerging field of <br/>DSS in cybersecurity by presenting a robust, AI-driven framework tailored for VM in CI. The <br/>findings highlight the system’s potential to not only enhance VM practices but also to drive <br/>strategic decision-making, operational efficiency, and cyber resilience. The integration of <br/>cutting-edge technologies underscores the relevance of this DSS as a comprehensive solution to <br/>address the complexities of modern cybersecurity challenges.
520 #3 - SUMMARY, ETC.
Summary, etc. في ظل التهديدات السيبرانية المتزايدة، تمثل إدارة الثغرات السيبرانية عنصرًا حيويًا لحماية البنية التحتية الحرجة. تقدم هذه الدراسة نظام دعم قرار (DSS) متقدم يعتمد على الذكاء الاصطناعي (AI) وتحليلات البيانات الضخمة (BDA)، بما يشمل تقنيات معالجة اللغة الطبيعية (NLP) والتعرف على الكيانات (NER)، بهدف تطوير ممارسات إدارة الثغرات. يعتمد النظام على مجموعة بيانات مخصصة لأصول المؤسسة ومنهجيات متقدمة لتحديد الثغرات بدقة، ويعرض نتائج التحليل من خلال لوحات معلومات تفاعلية. حقق النظام دقة بلغت 95.39% واسترجاعًا بنسبة 96.55%، مما يدل على كفاءته في تقليل الإيجابيات الكاذبة وتحسين الاستجابة. شارك 72 خبيرًا في الأمن السيبراني في تقييم النظام من خلال عروض عملية واستطلاع باستخدام مقياس ليكرت. وأكدت النتائج أربع فرضيات رئيسية، أهمها أن تقنيات AI وBDA تُحسن الكفاءة وتقلل التكاليف وتعزز جودة إدارة الثغرات. يساهم النظام كذلك في تحسين الموارد البشرية، ودعم قرارات المشتريات، وتعزيز إدارة المخاطر، بما يتماشى مع مبادئ المواءمة الاستراتيجية وقياس الأداء. تقدم هذه الدراسة نموذجًا مبتكرًا يعزز اتخاذ القرار ويعالج تحديات الأمن السيبراني الحديثة بكفاءة ومرونة.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issues also as CD.
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in Arabic & English.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Project Management
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element ادارة المشروعات
653 #1 - INDEX TERM--UNCONTROLLED
Uncontrolled term cyber vulnerability management
-- Cyber Security
-- Big Data Analytics
-- Artificial Intelligence
-- إدارة الثغرات السيبرانية
-- الأمن السيبراني
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Essam Ali Amin
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Mohamed Abdulla Ewees
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2025
Supervisory body Essam Ali Amin
-- Mohamed Abdulla Ewees
Universities Cairo University
Faculties Faculty of Graduate Studies for Statistics Research
Department Department of Project Management
905 ## - Cataloger and Reviser Names
Cataloger Name Shimaa
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 09.02.2026 93329 Cai01.18.06.Ph.D.2025.Ma.E 01010110093329000 09.02.2026 09.02.2026 Thesis
Cairo University Libraries Portal Implemented & Customized by: Eng. M. Mohamady Contacts: new-lib@cl.cu.edu.eg | cnul@cl.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: new-lib@cl.cu.edu.eg © All rights reserved — New Central Library
CNUL logo
Implemented & Customized by: Eng. M. Mohamady Contact: cnul@cl.cu.edu.eg © All rights reserved — Cairo National University Library