Local cover image
Local cover image
Image from OpenLibrary

Prediction Of Water Distribution Uniformity Of Sprinkler Irrigation System Based On Machine Learning Algorithms / By Khadiga Tawfiek Elhussiny Badr; Supervision Committee Dr. Ahmed Mahrous Hassan, Dr. Ali Mokhtar Mohammed, Dr. Ahmed Reda Abo Habsa, Dr. Mohamed Hanafy Hassan

By: Contributor(s): Material type: TextLanguage: English Summary language: English, Arabic Producer: 2024Description: 103 pages : illustrations ; 25 cm. + CDContent type:
  • text
Media type:
  • Unmediated
Carrier type:
  • volume
Other title:
  • / التنبؤ بانتظامية توزيع المياه لنظام الري بالرش اعتمادا علي خوارزميات التعلم الآلي [Added title page title]
Subject(s): DDC classification:
  • 631.587
Available additional physical forms:
  • Issued also as CD
Dissertation note: Thesis (M.Sc.) -Cairo University, 2024. Summary: The water shortage is one of the main challenges for future water policy. The coefficients of uniformity (Christiansen's uniformity coefficient (CU) and distribution uniformity (DU)) are an important parameter for designing irrigation systems, and these are accurate indicator for water loss. In this study, three machine learning algorithms (RF: Random Forest, XGB: Extreme Gradient Boosting and XGB-RF: Random Forest-Extreme Gradient Boosting), after training the different algorithms and testing it, the best result was as following: using XGB-RF to predict CU and DU with the first scenario. Were developed to predict the water distribution uniformity based on operating pressure, heights of sprinkler, nozzle diameter (discharge), wind speed, relative humidity, maximum and minimum temperature for three different impact sprinklers (KA-4, FOX and 2520) for square and triangular system layout. The main findings were; the highest CU values for (2520 sprinkler) under 200 kPa, 0.5m height, Nozzle 2.5mm was 86.7% in the square system and the discharge was 0.855 m3/h, Meanwhile, in the triangular system, it was 87.3% under the same pressure and discharge but at 1m height. Through the simulation work, the highest values of coefficient of determination (R2) were 0.796, 0.825 and 0.929 in RF, XGB and XGB-RF respectively in the first scenario for CU. Moreover, for the DU, the highest values of R2 were 0.701, 0.479 and 0.826 in RF, XGB and XGB-RF respectively in the first scenario. The obtained results revealed that the machine learning models is promising and can be as a rapid tool for decision-makers to manage the water scarcity.Summary: في هذه الرسالة، تم تطوير ثلاث خوارزميات للتعلم الآلي (, XGB ,RF و (XGB - RF للتنبؤ بتوحيد توزيع المياه بناءً على ضغط التشغيل وارتفاعات الرشاش وقطر الفوهة (التصرف) وسرعة الرياح والرطوبة النسبية ودرجة الحرارة العظمي والصغري لثلاث رشاشات (FOX ,KA-4 و (2520 لتخطيط النظام المربع والمثلث. وكانت النتائج الرئيسية هي أعلى قيمة CU كانت 87.3٪ في النظام المثلث للرشاش 2520 تحت ضغط تشغيل 200 كيلو باسكال، وارتفاع 1 متر وتصرف 0,855 متر مكعب/ساعة (قطر الفوهة 2,5 ملم). من خلال أعمال المحاكاة كانت أعلي قيم معامل التحديد (R2) هي 0.796 و 0.825 و 0.929 في RF ، XGB و XGB-RF على الترتيب في السيناريو الأول لـ CU.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Call number Status Barcode
Thesis قاعة الرسائل الجامعية - الدور الاول المكتبة المركزبة الجديدة - جامعة القاهرة Cai01.07.02.M.Sc.2024.Kh.P. (Browse shelf(Opens below)) Not for loan 01010110089951000

Thesis (M.Sc.) -Cairo University, 2024.

Bibliography: pages 78-96.

The water shortage is one of the main challenges for future water policy. The coefficients of uniformity (Christiansen's uniformity coefficient (CU) and distribution uniformity (DU)) are an important parameter for designing irrigation systems, and these are accurate indicator for water loss. In this study, three machine learning algorithms (RF: Random Forest, XGB: Extreme Gradient Boosting and XGB-RF: Random Forest-Extreme Gradient Boosting), after training the different algorithms and testing it, the best result was as following: using XGB-RF to predict CU and DU with the first scenario. Were developed to predict the water distribution uniformity based on operating pressure, heights of sprinkler, nozzle diameter (discharge), wind speed, relative humidity, maximum and minimum temperature for three different impact sprinklers (KA-4, FOX and 2520) for square and triangular system layout. The main findings were; the highest CU values for (2520 sprinkler) under 200 kPa, 0.5m height, Nozzle 2.5mm was 86.7% in the square system and the discharge was 0.855 m3/h, Meanwhile, in the triangular system, it was 87.3% under the same pressure and discharge but at 1m height. Through the simulation work, the highest values of coefficient of determination (R2) were 0.796, 0.825 and 0.929 in RF, XGB and XGB-RF respectively in the first scenario for CU. Moreover, for the DU, the highest values of R2 were 0.701, 0.479 and 0.826 in RF, XGB and XGB-RF respectively in the first scenario. The obtained results revealed that the machine learning models is promising and can be as a rapid tool for decision-makers to manage the water scarcity.

في هذه الرسالة، تم تطوير ثلاث خوارزميات للتعلم الآلي (, XGB ,RF و (XGB - RF للتنبؤ بتوحيد توزيع المياه بناءً على ضغط التشغيل وارتفاعات الرشاش وقطر الفوهة (التصرف) وسرعة الرياح والرطوبة النسبية ودرجة الحرارة العظمي والصغري لثلاث رشاشات (FOX ,KA-4 و (2520 لتخطيط النظام المربع والمثلث. وكانت النتائج الرئيسية هي أعلى قيمة CU كانت 87.3٪ في النظام المثلث للرشاش 2520 تحت ضغط تشغيل 200 كيلو باسكال، وارتفاع 1 متر وتصرف 0,855 متر مكعب/ساعة (قطر الفوهة 2,5 ملم). من خلال أعمال المحاكاة كانت أعلي قيم معامل التحديد (R2) هي 0.796 و 0.825 و 0.929 في RF ، XGB و XGB-RF على الترتيب في السيناريو الأول لـ CU.

Issued also as CD

Text in English and abstract in Arabic & English.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Cairo University Libraries Portal Implemented & Customized by: Eng. M. Mohamady Contacts: new-lib@cl.cu.edu.eg | cnul@cl.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: new-lib@cl.cu.edu.eg © All rights reserved — New Central Library
CNUL logo
Implemented & Customized by: Eng. M. Mohamady Contact: cnul@cl.cu.edu.eg © All rights reserved — Cairo National University Library