Image from OpenLibrary

An integrated framework for planning decisions in serial manufacturing system / by Yomna Hossam Eldin Abdel Aziz Gaber ; Supervision Prof. Dr. Ihab Ahmed Fahmy El-khodary, Prof. Dr. Hisham Mohamed Abdelsalam.

By: Contributor(s): Material type: TextLanguage: English Summary language: English, Arabic Producer: 2025Description: 138 Leaves : illustrations ; 30 cm. + CDContent type:
  • text
Media type:
  • Unmediated
Carrier type:
  • volume
Other title:
  • إطار متكامل لقرارات التخطيط في نظام التصنيع التسلسلي [Added title page title]
Subject(s): DDC classification:
  • 658.403
Available additional physical forms:
  • Issues also as CD.
Dissertation note: Thesis (Ph.D)-Cairo University, 2025. Summary: Optimization is paramount in manufacturing, serving as the cornerstone for maintaining competitiveness and long-term viability. This thesis addresses the intricate task of integrating three planning decisions (quantity, quality, and maintenance) within a serial multistage production system. At its core, this research introduces a comprehensive joint optimization model, which serves as the main building block for the solution framework and thoroughly examines the interconnections among these three critical aspects. The novel joint model is designed to encompass buffer allocation for efficiently managing stochastic processing times, part quality inspection planning to minimize defects, and preventive maintenance strategies to mitigate machine deterioration. By integrating these functions, the manufacturing system achieves enhanced overall performance and significant cost reductions. The research demonstrates an average cost reduction of 15% compared to existing models in the literature. The proposed model is formulated as a stochastic mixed-integer nonlinear programming (MINLP) problem, characterized by its NP-hard and combinatorial nature. To effectively address this complex problem, a comprehensive approach is employed, combining a genetic algorithm (GA) as the primary generative method, augmented with hybrid GA variations. Additionally, a simulation-based recursive approach serves as the evaluative technique, both of which collectively form the solution framework. The model and solution algorithm undergo rigorous verification and validation through computational experiments, supported by a design of experiments to fine-tune its parameters. Additionally, a comprehensive discussion of the research findings and their implications is provided, offering valuable insights for practitioners and decision-makers aiming to optimize production processes. This research makes a significant contribution to the existing body of knowledge by presenting a robust framework. This framework not only enhances performance but also reduces costs, effectively addressing the interconnected challenges of quantity, quality, and maintenance in serial multistage production systems.Summary: تقدم الرسالة إطارًا شاملاً للتحسين المشترك في قرارات التخطيط في أنظمة التصنيع التسلسلي، من خلال دمج القرارات المتعلقة بالكمية والجودة والصيانة ضمن إطار عمل تكاملي. يعالج النموذج تخصيص المخازن، وفحص جودة الأجزاء، والصيانة الوقائية بهدف تقليل التكاليف وتحسين كفاءة الإنتاج. تم صياغة النموذج كمشكلة برمجة غير خطية مختلطة الأعداد باستخدام خوارزمية جينية مع تحسينات هجينة ونهج محاكاة تكراري للتقييم. أظهر الإطار انخفاضاً في متوسط التكلفة بنسبة ١٥% مقارنة بالنماذج الحالية. تم التحقق من فعالية الإطار من خلال تجارب حسابية دقيقة، مما يعزز من موثوقيته وقابليته للتطبيق في تحسين أنظمة التصنيع.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Call number Status Barcode
Thesis قاعة الرسائل الجامعية - الدور الاول المكتبة المركزبة الجديدة - جامعة القاهرة Cai01.20.02.Ph.D.2025.Yo.I (Browse shelf(Opens below)) Not for loan 01010110093060000

Thesis (Ph.D)-Cairo University, 2025.

Bibliography: pages 132-138.

Optimization is paramount in manufacturing, serving as the cornerstone for maintaining
competitiveness and long-term viability. This thesis addresses the intricate task of
integrating three planning decisions (quantity, quality, and maintenance) within a serial
multistage production system. At its core, this research introduces a comprehensive joint
optimization model, which serves as the main building block for the solution framework
and thoroughly examines the interconnections among these three critical aspects.

The novel joint model is designed to encompass buffer allocation for efficiently managing
stochastic processing times, part quality inspection planning to minimize defects, and
preventive maintenance strategies to mitigate machine deterioration. By integrating these
functions, the manufacturing system achieves enhanced overall performance and
significant cost reductions. The research demonstrates an average cost reduction of 15%
compared to existing models in the literature.

The proposed model is formulated as a stochastic mixed-integer nonlinear programming
(MINLP) problem, characterized by its NP-hard and combinatorial nature. To effectively
address this complex problem, a comprehensive approach is employed, combining a
genetic algorithm (GA) as the primary generative method, augmented with hybrid GA
variations. Additionally, a simulation-based recursive approach serves as the evaluative
technique, both of which collectively form the solution framework.

The model and solution algorithm undergo rigorous verification and validation through
computational experiments, supported by a design of experiments to fine-tune its
parameters. Additionally, a comprehensive discussion of the research findings and their
implications is provided, offering valuable insights for practitioners and decision-makers
aiming to optimize production processes.

This research makes a significant contribution to the existing body of knowledge by
presenting a robust framework. This framework not only enhances performance but also
reduces costs, effectively addressing the interconnected challenges of quantity, quality,
and maintenance in serial multistage production systems.

تقدم الرسالة إطارًا شاملاً للتحسين المشترك في قرارات التخطيط في أنظمة التصنيع التسلسلي، من خلال دمج القرارات المتعلقة بالكمية والجودة والصيانة ضمن إطار عمل تكاملي. يعالج النموذج تخصيص المخازن، وفحص جودة الأجزاء، والصيانة الوقائية بهدف تقليل التكاليف وتحسين كفاءة الإنتاج. تم صياغة النموذج كمشكلة برمجة غير خطية مختلطة الأعداد باستخدام خوارزمية جينية مع تحسينات هجينة ونهج محاكاة تكراري للتقييم. أظهر الإطار انخفاضاً في متوسط التكلفة بنسبة ١٥% مقارنة بالنماذج الحالية. تم التحقق من فعالية الإطار من خلال تجارب حسابية دقيقة، مما يعزز من موثوقيته وقابليته للتطبيق في تحسين أنظمة التصنيع.

Issues also as CD.

Text in English and abstract in Arabic & English.

There are no comments on this title.

to post a comment.
Share
Cairo University Libraries Portal Implemented & Customized by: Eng. M. Mohamady Contacts: new-lib@cl.cu.edu.eg | cnul@cl.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: new-lib@cl.cu.edu.eg © All rights reserved — New Central Library
CNUL logo
Implemented & Customized by: Eng. M. Mohamady Contact: cnul@cl.cu.edu.eg © All rights reserved — Cairo National University Library