Application of swarm intelligence optimization for enhancing detection of epileptic seizures in EEG signals / Asmaa Hamad Elsaied Mohamed ; Supervised Aly Aly Fahmy , Aboulella Hassanien , Essam Halim Houssein
Material type:
- تطبيق امثلية الذكاء السربي لتحسين نوبات اكتشاف الصرع في إشارات رسم المخ [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.20.03.M.Sc.2018.As.A (Browse shelf(Opens below)) | Not for loan | 01010110077119000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.20.03.M.Sc.2018.As.A (Browse shelf(Opens below)) | 77119.CD | Not for loan | 01020110077119000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.20.03.M.Sc.2017.Sh.E Enhancing cloud services provisioning for social Networks / | Cai01.20.03.M.Sc.2018.Ah.C Clickjacking defense technique / | Cai01.20.03.M.Sc.2018.Ah.C Clickjacking defense technique / | Cai01.20.03.M.Sc.2018.As.A Application of swarm intelligence optimization for enhancing detection of epileptic seizures in EEG signals / | Cai01.20.03.M.Sc.2018.As.A Application of swarm intelligence optimization for enhancing detection of epileptic seizures in EEG signals / | Cai01.20.03.M.Sc.2018.Eh.C Comparison and enhancement of hyperspectral unmixing algorithms and techniques / | Cai01.20.03.M.Sc.2018.Eh.C Comparison and enhancement of hyperspectral unmixing algorithms and techniques / |
Thesis (M.Sc.) - Cairo University - Faculty of Computers and Information - Department of Computer Science
The thesis introduces a hybrid classification model using swarm optimization algorithms and support vector machines (SVMs) for automatic seizure detection in EEG. This proposed classification model consists of four main phases; namely,1) EEG pre-processing used to remove the noises from the EEG signals and decompose EEG signal into various sub-bands,2) feature extraction used to extract the EEG signal features from decomposed signal,3) Feature selection and classifier Parameters Optimization based swarm algorithms and 4) classification phase that is mainly used to analyze and classify the EEG signal into normal or abnormal
Issued also as CD
There are no comments on this title.