Speedup image spatio temporal feature extraction using GPGPU / Ahmed Mahmoud Ahmed Mehrez ; Supervised Elsayed E. Hemayed , Ahmed Abdelfattah Morgan
Material type:
- تحسين سرعة استخراج الخواص الزمانية المكانية للصور باستخدام وحدة المعالجات الرسومية [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.06.M.Sc.2018.Ah.S (Browse shelf(Opens below)) | Not for loan | 01010110077268000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.06.M.Sc.2018.Ah.S (Browse shelf(Opens below)) | 77268.CD | Not for loan | 01020110077268000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.13.06.M.Sc.2017.Yo.M Multimedia sentiment analysis using modified CNN and rnn models / | Cai01.13.06.M.Sc.2017.Yo.M Multimedia sentiment analysis using modified CNN and rnn models / | Cai01.13.06.M.Sc.2018.Ah.S Speedup image spatio temporal feature extraction using GPGPU / | Cai01.13.06.M.Sc.2018.Ah.S Speedup image spatio temporal feature extraction using GPGPU / | Cai01.13.06.M.Sc.2018.Al.S Smart scheduling and energy saving in wireless sensor networks / | Cai01.13.06.M.Sc.2018.Al.S Smart scheduling and energy saving in wireless sensor networks / | Cai01.13.06.M.Sc.2018.Am.B Biologically inspired deep learning system applied to Egyption multi-style license plate detection / |
Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Computer Engineering
The robust representation of image features becomes fundamental to most machine vision and image registration applications. Spatio-temporal feature extraction algorithms are favored because of their robust generated features. However, they have high computational complexity. In this thesis, we propose new parallel implementations, using GPU computing, for the two most widely used Spatio-temporal feature extraction algorithms: Scale-Invariant Feature Transform (SIFT) and Speeded-Up Robust Feature (SURF). In our implementations, we solve problems with previous parallel implementations, such as load imbalance, thread synchronization, and the use of atomic operations. We compare our presented implementations to previous CPU and GPU parallel implementations of the two algorithms. Results used in Human action recognition and achieve accuracy 96% for SIFT and 94.5% for SURF
Issued also as CD
There are no comments on this title.