TY - BOOK AU - Ahmed Abdellatif Abdelmoneim Mohamed Rezk, AU - Tarek Abd El Sadek Osman AU - Mohamed I. El-Anwar AU - Mahmoud Abdu Rahman Adli TI - Topology optimization of above ground steel storage tanks bottom plates with finite element analysis and testing verification U1 - 628.13 PY - 2024/// KW - Steel tanks KW - الخزانات الصلب KW - Storage Tanks KW - Bottom Plate KW - Finite Element KW - Optimum Design KW - Topology Optimization N1 - Thesis (M.Sc)-Cairo University, 2024; Bibliography: pages 57-58; Issues also as CD N2 - Storage tanks are essential assets for a variety of industries, and large aboveground storage tanks represent cornerstone of storage infrastructure. These tanks are typically vertical cylinders and have either flat or sloped bottoms that rest directly on foundations. However, concerns regarding their design and fitness for service are paramount, with international standards continually evolving to enhance safety and reliability. In aboveground welded steel storage tanks, the joint between the tank's first shell and the bottom plate is considered a critical area with a high level of bending stresses. Historically, tanks have failed due to fractures at the fillet weld. This research focuses on the need for a comprehensive approach to the design of the tank bottom, taking into accounts factors such as bottom plate thickness, annular plate width, annular plate thickness, and the projected length of the annular plate beyond the first shell. Many codes and standards lack definitive guidelines for such a design, leading to the development of Finite Element Analysis (FEA) models to examine stress levels at the joint between the tank's first shell and the bottom plate. The objectives of this study included the development of FEA model for an aboveground storage tank with an internal diameter of 100 meters, shell total height of 21.80 meters, and a maximum level of 20.18 meters for liquid storage, annular plate with a width of 1.98 meters and thickness of 0.023 meters, and bottom plate with a thickness of 0.014 meters and an average foundation settlement of 0.055 meters was implemented. The model was validated against real measurements available in literature. The study also investigated the effect of the friction existing between the bottom of the tank and the rigid foundation on bending stress at the joint between the tank's first shell and the bottom plate, and examined the impact of elastic foundation settlement on bottom plate design. During the results phase, the stress levels were recorded and compared to the acceptance levels as per ASME standard, which is widely considered an acceptable method. Furthermore, topology optimization was conducted using ANSYS, and the bottom plate total volume was reduced by 27%; تقدّم الدراسة نموذجًا باستخدام طريقة العناصر المحدودة بهدف تحسين تصميم قاع الخزانات المصنوعة من الصلب. حيث أشارت الأبحاث والدراسات إلى أهمية وصلة اللحام بين السطح الداخلي للخزان والقاع، نظرًا لتعرضها لمستوى عالٍ من إجهادات الثني واعتبارها عاملًا أساسيًا في فشل الخزانات. وتبرز الدراسة أهمية تحليل الإجهادات التي تتعرض لها هذه الوصلة بدقة من خلال التوظيف الأمثل لطرق العناصر المحدودة، وذلك باستخدام نموذج غير خطي يأخذ في الاعتبار عوامل مثل هبوط الأساس المرن والاحتكاك و تشمل الدراسة أيضًا مقارنة النتائج مع قياسات فعلية للإجهادات للتأكد من دقة النموذج. كما تتوافق معايير الدراسة مع المواصفات العالمية. وفي الختام، تقدّم الدراسة توظيفًا للتصميم الطوبولجي الأمثل لتحسين تصميم قاع الخزان وتقليل حجمه بنسبة ٢٧٪ ER -