TY - BOOK AU - Abd El Rahman Mohamed Reda Aly Hassan, AU - Ahmed Mohamed Helmi AU - Mohamed Hassan Algamal TI - Assessment of the impact of rainfall data gap filling on flood mitigation design storms U1 - 627.05 PY - 2025/// KW - Hydraulic engineering KW - الهندسة الهيدروليكية KW - Frequency Analysis KW - Parameter Estimation KW - KSA KW - Oman KW - Gap Filling N1 - Thesis (M.Sc)-Cairo University, 2025; Bibliography: pages 107-110.; Issues also as CD N2 - A methodology for conducting rainfall frequency analysis across several ground gauge stations in Oman and KSA is presented. The main goal is to assess how the accuracy of rainfall frequency analysis which is crucial for hydrological modeling in the field of flood mitigation is affected by the use of gridded data and gap-filling techniques that have already been used. The study includes the collection of rainfall data from a range of rainfall stations within the study areas. Advanced gap-filling methods, implemented by prior researchers, were used to fill the missing data of some years and ensure the continuity of records. Additionally, A gridded data produced from the gap filled data, which offers continuous spatial coverage, was analyzed in comparison to assess its effectiveness. A practical developed software named BRF was introduced. Through parallel computing, BRF makes it possible to process large rainfall datasets efficiently. This allows for simultaneous frequency analysis and statistical distribution fitting across massive amounts of station data. This tool greatly simplifies the analysis of big datasets, which is especially helpful for hydrologists doing regional rainfall studies and experts updating drainage manuals. BRF’s key features include its capability to perform comparisons of different statistical distributions both analytically and graphically, as well as generating IDF curves for selected statistical distributions for all stations an essential aspect for stormwater design and flood risk.; تقدم هذه الدراسة منهجية شاملة لتحليل تكرار الأمطار عبر محطات أرصاد متعددة في السعودية وعُمان، مع التركيز على تأثير تقنيات ملء الفجوات وتحويل البيانات لشبكة. تم جمع ومعالجة بيانات الأمطار، بما في ذلك البيانات المملوءة سابقًا، لضمان استمرارية التحليل. كما تم مقارنة البيانات الشبكية بالملاحظات التقليدية لتقييم دقتها. تم تطوير أداة Bulk Rain Fit (BRF) لتسهيل تحليل البيانات الضخمة باستخدام الحوسبة المتوازية، مما يعزز دقة تلاؤم التوزيعات الإحصائية. توفر BRF مقارنات بين التوزيعات المختلفة، وتنتج منحنيات شدة-مدة-تكرار (IDF)، مما يدعم تصميم بنية تصريف المياه وتقييم مخاطر الفيضانات ER -