TY - BOOK AU - Yassmin Shawki Ali Ahmed, AU - Salwa Mahmoud Assar AU - Abd El-Tawab Ahmed Gira TI - Prediction of a travel package based on tourists’ personal data using data mining U1 - 006.31 PY - 2025/// KW - data mining KW - التنقيب عن البيانات KW - Data mining KW - Decision tree KW - Travel package recommendation KW - Tourism service personalization KW - Tourists’ personal data KW - Customer satisfaction improvement KW - تنقيب البيانات KW - شجرة القرار N1 - Thesis (M.Sc)-Cairo University, 2025; Bibliography: pages 82-83.; Issues also as CD N2 - In the era of big data and the evolution of digital technology, the need for advanced methods of data analysis has become essential to keep up with modern requirements and enhance competitiveness. Tourism companies face significant challenges in meeting the increasing and diverse needs of customers, as the decision-making process regarding the selection of tourism packages now requires greater accuracy and speed. With the substantial growth in the tourism industry and the expanding range of options available to travelers, companies encounter numerous challenges related to their ability to offer the most suitable tourism packages to customers quickly and accurately. The core issue lies in the difficulty of understanding individual customer needs due to the diversity and complexity of data. Additionally, the time consumed for each customer who needs guidance in selecting the appropriate package impacts company performance and customer trust. This may also result in ineffective decisions that influence customer satisfaction and lead to the loss of important marketing opportunities. Therefore, it has become essential to use advanced analytical tools to extract knowledge from large data sets and transform it into actionable and impactful decisions. In this research, data mining techniques, specifically the decision tree algorithm, were utilized to build a predictive model aimed at recommending the most suitable tourism package based on customers' personal data. The data included a set of critical attributes such as nationality, gender, age, travel purpose, budget, preferred destination, and package name. The data was collected and processed to ensure its quality and suitability for analysis. The model was then trained using the decision tree algorithm due to its ability to handle multidimensional data and provide clear and easy- to-interpret results. The results showed that the proposed model achieved high accuracy in predicting the appropriate tourism packages. The model also demonstrated balanced performance when using both training and testing data, reflecting its effectiveness, generalization capability, and ability to make accurate predictions without overfitting. This study highlights the importance of relying on data mining techniques to improve decision- making processes in the tourism sector. Companies can provide personalized recommendations that contribute to enhancing customer satisfaction and increasing their loyalty. Furthermore, this research represents an effective step toward improving the efficiency of marketing operations and achieving a sustainable competitive advantage in the growing tourism market. We used Python in Jupiter notebook, and extracted data using Structured Query Language (SQL) from Salesforce (Salesforce Service Cloud provides a fast, artificial intelligence (AI)-driven customer service and support experience to customers and enables businesses to scale their operations efficiently).; في عصر البيانات الضخمة والتكنولوجيا الرقمية، أصبحت الحاجة لاستخدام أساليب تحليل متقدمة أمرًا ضروريًا لتعزيز تنافسية شركات السياحة. تواجه هذه الشركات تحديات كبيرة في تقديم الحزم الأنسب للعملاء بسرعة ودقة، حيث يؤدي تنوع البيانات وتعقيدها إلى صعوبة فهم احتياجات العملاء بشكل فردي، مما يزيد من الوقت المستغرق لكل عميل ويؤثر سلبًا على أداء الشركة وثقة العملاء. أيضًا، قد يؤدي ذلك إلى قرارات غير فعالة وخسارة فرص تسويقية مهمة. في هذا البحث، تم استخدام تقنيات التنقيب عن البيانات، وتحديدًا خوارزمية شجرة القرار، لبناء نموذج تنبؤي يُوصي بالحزمة السياحية الأنسب بناءً على البيانات الشخصية للعملاء، مثل الجنسية، النوع، العمر، الهدف من السفر، الميزانية، الوجهة، واسم الحزمة. بعد جمع البيانات ومعالجتها، تم تدريب النموذج باستخدام شجرة القرار بسبب قدرتها على التعامل مع البيانات المعقدة وتقديم نتائج واضحة. أظهرت النتائج دقة عالية للنموذج في التنبؤ وتوازنًا في الأداء بين بيانات التدريب والاختبار، مما يعكس فعاليته وقدرته على التعميم دون الإفراط في التعلم. تؤكد هذه الدراسة أهمية الاعتماد على التنقيب عن البيانات لتحسين اتخاذ القرار وزيادة رضا العملاء وولائهم، كما تعزز كفاءة العمليات وتحقيق ميزة تنافسية مستدامة في سوق السياحة. تم تنفيذ العمل باستخدام لغة Python في بيئة Jupiter Notebook، وتم استخراج البيانات عبر SQL من Salesforce. ER -