Image from OpenLibrary

Assessment of the impact of rainfall data gap filling on flood mitigation design storms / by Abd El Rahman Mohamed Reda Aly Hassan ; Supervisors Prof. Ahmed Mohamed Helmi, Dr.Mohamed Hassan Algamal.

By: Contributor(s): Material type: TextLanguage: English Summary language: English, Arabic Producer: 2025Description: 110 pages : illustrations ; 30 cm. + CDContent type:
  • text
Media type:
  • Unmediated
Carrier type:
  • volume
Other title:
  • تقييم تأثير ملء فراغات بيانات المطر في مجال درء مخاطر الفيضانات [Added title page title]
Subject(s): DDC classification:
  • 627.05
Available additional physical forms:
  • Issues also as CD.
Dissertation note: Thesis (M.Sc)-Cairo University, 2025. Summary: A methodology for conducting rainfall frequency analysis across several ground gauge stations in Oman and KSA is presented. The main goal is to assess how the accuracy of rainfall frequency analysis which is crucial for hydrological modeling in the field of flood mitigation is affected by the use of gridded data and gap-filling techniques that have already been used. The study includes the collection of rainfall data from a range of rainfall stations within the study areas. Advanced gap-filling methods, implemented by prior researchers, were used to fill the missing data of some years and ensure the continuity of records. Additionally, A gridded data produced from the gap filled data, which offers continuous spatial coverage, was analyzed in comparison to assess its effectiveness. A practical developed software named BRF was introduced. Through parallel computing, BRF makes it possible to process large rainfall datasets efficiently. This allows for simultaneous frequency analysis and statistical distribution fitting across massive amounts of station data. This tool greatly simplifies the analysis of big datasets, which is especially helpful for hydrologists doing regional rainfall studies and experts updating drainage manuals. BRF’s key features include its capability to perform comparisons of different statistical distributions both analytically and graphically, as well as generating IDF curves for selected statistical distributions for all stations an essential aspect for stormwater design and flood risk. Summary: تقدم هذه الدراسة منهجية شاملة لتحليل تكرار الأمطار عبر محطات أرصاد متعددة في السعودية وعُمان، مع التركيز على تأثير تقنيات ملء الفجوات وتحويل البيانات لشبكة. تم جمع ومعالجة بيانات الأمطار، بما في ذلك البيانات المملوءة سابقًا، لضمان استمرارية التحليل. كما تم مقارنة البيانات الشبكية بالملاحظات التقليدية لتقييم دقتها. تم تطوير أداة Bulk Rain Fit (BRF) لتسهيل تحليل البيانات الضخمة باستخدام الحوسبة المتوازية، مما يعزز دقة تلاؤم التوزيعات الإحصائية. توفر BRF مقارنات بين التوزيعات المختلفة، وتنتج منحنيات شدة-مدة-تكرار (IDF)، مما يدعم تصميم بنية تصريف المياه وتقييم مخاطر الفيضانات.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Call number Status Barcode
Thesis قاعة الرسائل الجامعية - الدور الاول المكتبة المركزبة الجديدة - جامعة القاهرة Cai01.13.05.M.Sc.2025.Ab.A (Browse shelf(Opens below)) Not for loan 01010110092631000

Thesis (M.Sc)-Cairo University, 2025.

Bibliography: pages 107-110.

A methodology for conducting rainfall frequency analysis across several ground
gauge stations in Oman and KSA is presented. The main goal is to assess how the
accuracy of rainfall frequency analysis which is crucial for hydrological modeling
in the field of flood mitigation is affected by the use of gridded data and gap-filling
techniques that have already been used. The study includes the collection of rainfall
data from a range of rainfall stations within the study areas. Advanced gap-filling
methods, implemented by prior researchers, were used to fill the missing data of
some years and ensure the continuity of records. Additionally, A gridded data
produced from the gap filled data, which offers continuous spatial coverage, was
analyzed in comparison to assess its effectiveness.
A practical developed software named BRF was introduced. Through parallel
computing, BRF makes it possible to process large rainfall datasets efficiently. This
allows for simultaneous frequency analysis and statistical distribution fitting
across massive amounts of station data. This tool greatly simplifies the analysis of
big datasets, which is especially helpful for hydrologists doing regional rainfall
studies and experts updating drainage manuals. BRF’s key features include its
capability to perform comparisons of different statistical distributions both
analytically and graphically, as well as generating IDF curves for selected statistical
distributions for all stations an essential aspect for stormwater design and flood risk.

تقدم هذه الدراسة منهجية شاملة لتحليل تكرار الأمطار عبر محطات أرصاد متعددة في السعودية وعُمان، مع التركيز على تأثير تقنيات ملء الفجوات وتحويل البيانات لشبكة. تم جمع ومعالجة بيانات الأمطار، بما في ذلك البيانات المملوءة سابقًا، لضمان استمرارية التحليل. كما تم مقارنة البيانات الشبكية بالملاحظات التقليدية لتقييم دقتها. تم تطوير أداة Bulk Rain Fit (BRF) لتسهيل تحليل البيانات الضخمة باستخدام الحوسبة المتوازية، مما يعزز دقة تلاؤم التوزيعات الإحصائية. توفر BRF مقارنات بين التوزيعات المختلفة، وتنتج منحنيات شدة-مدة-تكرار (IDF)، مما يدعم تصميم بنية تصريف المياه وتقييم مخاطر الفيضانات.

Issues also as CD.

Text in English and abstract in Arabic & English.

There are no comments on this title.

to post a comment.
Share
Cairo University Libraries Portal Implemented & Customized by: Eng. M. Mohamady Contacts: new-lib@cl.cu.edu.eg | cnul@cl.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: new-lib@cl.cu.edu.eg © All rights reserved — New Central Library
CNUL logo
Implemented & Customized by: Eng. M. Mohamady Contact: cnul@cl.cu.edu.eg © All rights reserved — Cairo National University Library