Image from OpenLibrary

Prediction of a travel package based on tourists’ personal data using data mining / by Yassmin Shawki Ali Ahmed ; Supervision Prof. Salwa Mahmoud Assar, Dr. Abd El-Tawab Ahmed Gira.

By: Contributor(s): Material type: TextLanguage: English Summary language: English, Arabic Producer: 2025Description: 84 Leaves : illustrations ; 30 cm. + CDContent type:
  • text
Media type:
  • Unmediated
Carrier type:
  • volume
Other title:
  • التنبؤ ببرنامج السفر بناءً على البيانات الشخصية للسائحين باستخدام التنقيب عن البيانات [Added title page title]
Subject(s): DDC classification:
  • 006.31
Available additional physical forms:
  • Issues also as CD.
Dissertation note: Thesis (M.Sc)-Cairo University, 2025. Summary: In the era of big data and the evolution of digital technology, the need for advanced methods of data analysis has become essential to keep up with modern requirements and enhance competitiveness. Tourism companies face significant challenges in meeting the increasing and diverse needs of customers, as the decision-making process regarding the selection of tourism packages now requires greater accuracy and speed. With the substantial growth in the tourism industry and the expanding range of options available to travelers, companies encounter numerous challenges related to their ability to offer the most suitable tourism packages to customers quickly and accurately. The core issue lies in the difficulty of understanding individual customer needs due to the diversity and complexity of data. Additionally, the time consumed for each customer who needs guidance in selecting the appropriate package impacts company performance and customer trust. This may also result in ineffective decisions that influence customer satisfaction and lead to the loss of important marketing opportunities. Therefore, it has become essential to use advanced analytical tools to extract knowledge from large data sets and transform it into actionable and impactful decisions. In this research, data mining techniques, specifically the decision tree algorithm, were utilized to build a predictive model aimed at recommending the most suitable tourism package based on customers' personal data. The data included a set of critical attributes such as nationality, gender, age, travel purpose, budget, preferred destination, and package name. The data was collected and processed to ensure its quality and suitability for analysis. The model was then trained using the decision tree algorithm due to its ability to handle multidimensional data and provide clear and easy- to-interpret results. The results showed that the proposed model achieved high accuracy in predicting the appropriate tourism packages. The model also demonstrated balanced performance when using both training and testing data, reflecting its effectiveness, generalization capability, and ability to make accurate predictions without overfitting. This study highlights the importance of relying on data mining techniques to improve decision- making processes in the tourism sector. Companies can provide personalized recommendations that contribute to enhancing customer satisfaction and increasing their loyalty. Furthermore, this research represents an effective step toward improving the efficiency of marketing operations and achieving a sustainable competitive advantage in the growing tourism market. We used Python in Jupiter notebook, and extracted data using Structured Query Language (SQL) from Salesforce (Salesforce Service Cloud provides a fast, artificial intelligence (AI)-driven customer service and support experience to customers and enables businesses to scale their operations efficiently). Summary: في عصر البيانات الضخمة والتكنولوجيا الرقمية، أصبحت الحاجة لاستخدام أساليب تحليل متقدمة أمرًا ضروريًا لتعزيز تنافسية شركات السياحة. تواجه هذه الشركات تحديات كبيرة في تقديم الحزم الأنسب للعملاء بسرعة ودقة، حيث يؤدي تنوع البيانات وتعقيدها إلى صعوبة فهم احتياجات العملاء بشكل فردي، مما يزيد من الوقت المستغرق لكل عميل ويؤثر سلبًا على أداء الشركة وثقة العملاء. أيضًا، قد يؤدي ذلك إلى قرارات غير فعالة وخسارة فرص تسويقية مهمة. في هذا البحث، تم استخدام تقنيات التنقيب عن البيانات، وتحديدًا خوارزمية شجرة القرار، لبناء نموذج تنبؤي يُوصي بالحزمة السياحية الأنسب بناءً على البيانات الشخصية للعملاء، مثل الجنسية، النوع، العمر، الهدف من السفر، الميزانية، الوجهة، واسم الحزمة. بعد جمع البيانات ومعالجتها، تم تدريب النموذج باستخدام شجرة القرار بسبب قدرتها على التعامل مع البيانات المعقدة وتقديم نتائج واضحة. أظهرت النتائج دقة عالية للنموذج في التنبؤ وتوازنًا في الأداء بين بيانات التدريب والاختبار، مما يعكس فعاليته وقدرته على التعميم دون الإفراط في التعلم. تؤكد هذه الدراسة أهمية الاعتماد على التنقيب عن البيانات لتحسين اتخاذ القرار وزيادة رضا العملاء وولائهم، كما تعزز كفاءة العمليات وتحقيق ميزة تنافسية مستدامة في سوق السياحة. تم تنفيذ العمل باستخدام لغة Python في بيئة Jupiter Notebook، وتم استخراج البيانات عبر SQL من Salesforce.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Call number Status Barcode
Thesis قاعة الرسائل الجامعية - الدور الاول المكتبة المركزبة الجديدة - جامعة القاهرة Cai01.18.12.M.Sc.2025.Ya.P (Browse shelf(Opens below)) Not for loan 01010110092926000

Thesis (M.Sc)-Cairo University, 2025.

Bibliography: pages 82-83.

In the era of big data and the evolution of digital technology, the need for advanced methods of data
analysis has become essential to keep up with modern requirements and enhance competitiveness.
Tourism companies face significant challenges in meeting the increasing and diverse needs of
customers, as the decision-making process regarding the selection of tourism packages now requires
greater accuracy and speed.
With the substantial growth in the tourism industry and the expanding range of options available to
travelers, companies encounter numerous challenges related to their ability to offer the most suitable
tourism packages to customers quickly and accurately. The core issue lies in the difficulty of
understanding individual customer needs due to the diversity and complexity of data. Additionally,
the time consumed for each customer who needs guidance in selecting the appropriate package
impacts company performance and customer trust. This may also result in ineffective decisions that
influence customer satisfaction and lead to the loss of important marketing opportunities. Therefore,
it has become essential to use advanced analytical tools to extract knowledge from large data sets and
transform it into actionable and impactful decisions.
In this research, data mining techniques, specifically the decision tree algorithm, were utilized to
build a predictive model aimed at recommending the most suitable tourism package based on
customers' personal data. The data included a set of critical attributes such as nationality, gender, age,
travel purpose, budget, preferred destination, and package name. The data was collected and
processed to ensure its quality and suitability for analysis. The model was then trained using the
decision tree algorithm due to its ability to handle multidimensional data and provide clear and easy-
to-interpret results.
The results showed that the proposed model achieved high accuracy in predicting the appropriate
tourism packages. The model also demonstrated balanced performance when using both training and
testing data, reflecting its effectiveness, generalization capability, and ability to make accurate
predictions without overfitting.
This study highlights the importance of relying on data mining techniques to improve decision-
making processes in the tourism sector. Companies can provide personalized recommendations that
contribute to enhancing customer satisfaction and increasing their loyalty. Furthermore, this research
represents an effective step toward improving the efficiency of marketing operations and achieving a
sustainable competitive advantage in the growing tourism market.
We used Python in Jupiter notebook, and extracted data using Structured Query Language (SQL)
from Salesforce (Salesforce Service Cloud provides a fast, artificial intelligence (AI)-driven
customer service and support experience to customers and enables businesses to scale their
operations efficiently).

في عصر البيانات الضخمة والتكنولوجيا الرقمية، أصبحت الحاجة لاستخدام أساليب تحليل متقدمة أمرًا ضروريًا لتعزيز تنافسية شركات السياحة. تواجه هذه الشركات تحديات كبيرة في تقديم الحزم الأنسب للعملاء بسرعة ودقة، حيث يؤدي تنوع البيانات وتعقيدها إلى صعوبة فهم احتياجات العملاء بشكل فردي، مما يزيد من الوقت المستغرق لكل عميل ويؤثر سلبًا على أداء الشركة وثقة العملاء. أيضًا، قد يؤدي ذلك إلى قرارات غير فعالة وخسارة فرص تسويقية مهمة.
في هذا البحث، تم استخدام تقنيات التنقيب عن البيانات، وتحديدًا خوارزمية شجرة القرار، لبناء نموذج تنبؤي يُوصي بالحزمة السياحية الأنسب بناءً على البيانات الشخصية للعملاء، مثل الجنسية، النوع، العمر، الهدف من السفر، الميزانية، الوجهة، واسم الحزمة. بعد جمع البيانات ومعالجتها، تم تدريب النموذج باستخدام شجرة القرار بسبب قدرتها على التعامل مع البيانات المعقدة وتقديم نتائج واضحة.
أظهرت النتائج دقة عالية للنموذج في التنبؤ وتوازنًا في الأداء بين بيانات التدريب والاختبار، مما يعكس فعاليته وقدرته على التعميم دون الإفراط في التعلم. تؤكد هذه الدراسة أهمية الاعتماد على التنقيب عن البيانات لتحسين اتخاذ القرار وزيادة رضا العملاء وولائهم، كما تعزز كفاءة العمليات وتحقيق ميزة تنافسية مستدامة في سوق السياحة. تم تنفيذ العمل باستخدام لغة Python في بيئة Jupiter Notebook، وتم استخراج البيانات عبر SQL من Salesforce.

Issues also as CD.

Text in English and abstract in Arabic & English.

There are no comments on this title.

to post a comment.
Share
Cairo University Libraries Portal Implemented & Customized by: Eng. M. Mohamady Contacts: new-lib@cl.cu.edu.eg | cnul@cl.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: new-lib@cl.cu.edu.eg © All rights reserved — New Central Library
CNUL logo
Implemented & Customized by: Eng. M. Mohamady Contact: cnul@cl.cu.edu.eg © All rights reserved — Cairo National University Library