000 04684namaa2200445 i 4500
003 OSt
005 20250223033411.0
008 250115s2024 ua a|||| |||| 000 0 eng d
040 _aEG-GICUC
_beng
_cEG-GICUC
_dEG-GICUC
_erda
041 0 _aeng
_beng
_bara
049 _aDeposit
082 0 4 _a631.587
092 _a631.587
_221
097 _aM.Sc
099 _aCai01.07.02.M.Sc.2024.Kh.P.
100 0 _aKhadiga Tawfiek Elhussiny Badr,
_epreparation.
245 1 0 _aPrediction Of Water Distribution Uniformity Of Sprinkler Irrigation System Based On Machine Learning Algorithms /
_c By Khadiga Tawfiek Elhussiny Badr; Supervision Committee Dr. Ahmed Mahrous Hassan, Dr. Ali Mokhtar Mohammed, Dr. Ahmed Reda Abo Habsa, Dr. Mohamed Hanafy Hassan
246 1 5 _a / التنبؤ بانتظامية توزيع المياه لنظام الري بالرش اعتمادا علي خوارزميات التعلم الآلي
264 0 _c2024.
300 _a103 pages :
_billustrations ;
_c25 cm. +
_eCD.
336 _atext
_2rda content
337 _aUnmediated
_2rdamedia
338 _avolume
_2rdacarrier
502 _aThesis (M.Sc.) -Cairo University, 2024.
504 _aBibliography: pages 78-96.
520 _aThe water shortage is one of the main challenges for future water policy. The coefficients of uniformity (Christiansen's uniformity coefficient (CU) and distribution uniformity (DU)) are an important parameter for designing irrigation systems, and these are accurate indicator for water loss. In this study, three machine learning algorithms (RF: Random Forest, XGB: Extreme Gradient Boosting and XGB-RF: Random Forest-Extreme Gradient Boosting), after training the different algorithms and testing it, the best result was as following: using XGB-RF to predict CU and DU with the first scenario. Were developed to predict the water distribution uniformity based on operating pressure, heights of sprinkler, nozzle diameter (discharge), wind speed, relative humidity, maximum and minimum temperature for three different impact sprinklers (KA-4, FOX and 2520) for square and triangular system layout. The main findings were; the highest CU values for (2520 sprinkler) under 200 kPa, 0.5m height, Nozzle 2.5mm was 86.7% in the square system and the discharge was 0.855 m3/h, Meanwhile, in the triangular system, it was 87.3% under the same pressure and discharge but at 1m height. Through the simulation work, the highest values of coefficient of determination (R2) were 0.796, 0.825 and 0.929 in RF, XGB and XGB-RF respectively in the first scenario for CU. Moreover, for the DU, the highest values of R2 were 0.701, 0.479 and 0.826 in RF, XGB and XGB-RF respectively in the first scenario. The obtained results revealed that the machine learning models is promising and can be as a rapid tool for decision-makers to manage the water scarcity.
520 _aفي هذه الرسالة، تم تطوير ثلاث خوارزميات للتعلم الآلي (, XGB ,RF و (XGB - RF للتنبؤ بتوحيد توزيع المياه بناءً على ضغط التشغيل وارتفاعات الرشاش وقطر الفوهة (التصرف) وسرعة الرياح والرطوبة النسبية ودرجة الحرارة العظمي والصغري لثلاث رشاشات (FOX ,KA-4 و (2520 لتخطيط النظام المربع والمثلث. وكانت النتائج الرئيسية هي أعلى قيمة CU كانت 87.3٪ في النظام المثلث للرشاش 2520 تحت ضغط تشغيل 200 كيلو باسكال، وارتفاع 1 متر وتصرف 0,855 متر مكعب/ساعة (قطر الفوهة 2,5 ملم). من خلال أعمال المحاكاة كانت أعلي قيم معامل التحديد (R2) هي 0.796 و 0.825 و 0.929 في RF ، XGB و XGB-RF على الترتيب في السيناريو الأول لـ CU.
530 _aIssued also as CD
546 _aText in English and abstract in Arabic & English.
650 7 _aIrrigation
_2qrmak
653 0 _aWater distribution uniformity
_asprinkler irrigation
_awater shortage
_amachine learning algorithms
700 0 _aAhmed Mahrous Hassan
_ethesis advisor.
700 0 _aAli Mokhtar Mohammed
_ethesis advisor.
700 0 _aAhmed Reda Abou-Habsa
_ethesis advisor.
700 0 _aMohamed Hanafy Hassan (deceased)
_ethesis advisor.
900 _b01-01-2024
_cAhmed Mahrous Hassan
_cAli Mokhtar Mohammed
_cAhmed Reda Abou-Habsa
_cMohamed Hanafy Hassan (deceased)
_UCairo University
_FFaculty of Agriculture
_DDepartment of Agricultural Engineering
905 _aEman El gebaly
_eHuda
942 _2ddc
_cTH
_e21
_n0
999 _c170218