| 000 | 05224namaa22004331i 4500 | ||
|---|---|---|---|
| 003 | EG-GICUC | ||
| 005 | 20251101140857.0 | ||
| 008 | 251101s2025 ua a|||frm||| 000 0 eng d | ||
| 040 |
_aEG-GICUC _beng _cEG-GICUC _dEG-GICUC _erda |
||
| 041 | 0 |
_aeng _beng _bara |
|
| 049 | _aDeposit | ||
| 082 | 0 | 4 | _a519.5 |
| 092 |
_a519.5 _221 |
||
| 097 | _aPh.D | ||
| 099 | _aCai01.18.03.Ph.D.2025.Am.S | ||
| 100 | 0 |
_aAmany Mohamed Shehata Hamed El-Sheikh, _epreparation. |
|
| 245 | 1 | 0 |
_aSome new generated families of distributions with applications in actuarial sciences / _cby Amany Mohamed Shehata Hamed El-Sheikh ; Supervisors Prof. El-Sayed Ahmed El-Sherpieny, Prof.Ahmed Zakaria Afify. |
| 246 | 1 | 5 | _aبعض عائلات التوزيعات الاحتمالية الجديدة المولدة مع التطبيقات في العلوم الاكتوارية |
| 264 | 0 | _c2025. | |
| 300 |
_a144 pages : _billustrations ; _c30 cm. + _eCD. |
||
| 336 |
_atext _2rda content |
||
| 337 |
_aUnmediated _2rdamedia |
||
| 338 |
_avolume _2rdacarrier |
||
| 502 | _aThesis (Ph.D)-Cairo University, 2025. | ||
| 504 | _aBibliography: pages 135-144. | ||
| 520 | 3 | _aA risk measure is used in financial mathematics to quantify the degree of risk or uncertainty associated with a certain event or series of occurrences and to establish how much of an asset or group of assets (traditionally currency) should be held in reserve. This reserve is intended to help the regulator accept the risks that financial institutions, such banks and insurance firms, assume. A function that converts a probability distribution to a real number is known as a risk measure in statistics. In statistics, a wide range of risk measures are employed; the selection of a particular measure is contingent upon the specific use case. Variance, standard deviation, projected shortfall, value at risk, conditional value at risk, and semi-deviation are a few examples of common risk measurements. Classical distributions are frequently utilized in many applicable fields, including engineering, medical sciences, actuarial science, environmental studies, economics, finance, and insurance, to represent lifespan data. Quite successfully, these distributions have been utilized in all the sectors indicated above. However, when the data follow non monotonic failure rates, these classical distributions do not always provide the greatest match in many domains, including reliability engineering and the medical sciences. It is always feasible to create a wide variety of statistical distributions to create more adaptable and appropriate real-world circumstances. Thus, expanded variants of these classical distributions are clearly needed to handle reliability engineering and bio-medical data. The researchers' motivation to create fresh extensions of the current distributions stemmed from this curiosity. By incorporating one extra variable, these extended distributions offer greater flexibility. | |
| 520 | 3 | _aلقد استخدمت العديد من التوزيعات الكلاسيكية علي نطاق واسع علي مدي العقود الماضية لتمثيل البيانات في عدة مجالات مثل الهندسة والعلوم البيئية والطبية والدرسات البيولوجية والديمغرافيا والاقتصاد والتمويل والتأمين ولكن في كثير من الحالات نجد أن التوزيعات الاحتمالية الكلاسيكية ليست مناسبه للبيانات الحقيقية. ولذلك فما زالت هناك حاجة ملحة الي العديد من التوزيعات التي تناسب المجالات التطبيقية مثل تطبيقات الحياة والتمويل والتأمين ولهذا السبب قد تم دراسة عدة طرق للحصول علي أسر جديدة من التوزيعات. وقد بذلت بعض المحاولات لتحديد العائلات الجديدة من التوزيعات الاحتمالية التى تمتد لعائلات معروفة من التوزيعات وفي الوقت نفسه توفر مرونة كبيرة في البيانات في الممارسة العلمية. ومن بين هذه الأساليب يتم تركيب بعض التوزيعات المنفصلة مع توزيعات الحياة حتي تكون ذات مرونة كبيرة في تمثيل بيانات الحياة وذلك من وجهة النظر العلمية | |
| 530 | _aIssues also as CD. | ||
| 546 | _aText in English and abstract in Arabic & English. | ||
| 650 | 0 | _aMathematical statistics | |
| 650 | 0 | _aالإحصاء الرياضي | |
| 653 | 1 |
_aAlpha-power family _aBurr X family _avalue at risk _aCramér-von Mises estimation _a mean residual life; _aWeibull distribution _aMarshall and Olkin family |
|
| 700 | 0 |
_aEl-Sayed Ahmed El-Sherpieny _ethesis advisor. |
|
| 700 | 0 |
_aAhmed Zakaria Afify _ethesis advisor. |
|
| 900 |
_b01-01-2025 _cEl-Sayed Ahmed El-Sherpieny _cAhmed Zakaria Afify _UCairo University _FFaculty of Graduate Studies for Statistical Research _DDepartment of Mathematical Statistics |
||
| 905 | _aShimaa | ||
| 942 |
_2ddc _cTH _e21 _n0 |
||
| 999 | _c175316 | ||