000 07437namaa22004451i 4500
003 EG-GICUC
005 20251224131749.0
008 251122s2025 ua a|||frm||| 000 0 eng d
040 _aEG-GICUC
_beng
_cEG-GICUC
_dEG-GICUC
_erda
041 0 _aeng
_beng
_bara
049 _aDeposit
082 0 4 _a610.284
092 _a610.284
_221
097 _aPh.D
099 _aCai01.09.13.Ph.D.2025.Sa.A
100 0 _aSally Mansour Abdel-Hady,
_epreparation.
245 1 4 _aThe accuracy of computer aided detection of second mesio-buccal canal of maxillary first molars on cbct images using deep learning model :
_b(artificial intelligence) diagnostic accuracy study /
_cby Sally Mansour Abdel-Hady ; Supervisors Dr. Enas Anter, Dr. Mushira Dahaba, Dr. Arwa Mousa, Dr. Ali Khater.
246 1 5 _a دقة الحاسب الآلي في اكتشاف القناة الدانية الشدقية الثانية للأضراس العلوية الأولي علي صور الأشعة المقطعية بالحاسوب مخروطية الشعاع باستخدام نموذج التعلم العميق( الذكاء الاصطناعي ) :
_bدراسة دقة تشخيصية /
264 0 _c2025.
300 _a111 pages :
_billustrations ;
_c25 cm. +
_eCD.
336 _atext
_2rda content
337 _aUnmediated
_2rdamedia
338 _avolume
_2rdacarrier
502 _aThesis (Ph.D)-Cairo University, 2025.
504 _aBibliography: pages 96-107
520 3 _aAim: The purpose of this study was to assess the accuracy of customized deep learning model using U-Net to detect and segment second mesio-buccal canal of maxillary first molars on CBCT scans. Methodology: CBCT scans of 41 patients were imported into 3d slicer software to crop and segment the canals of maxillary first molar with 2 different methods. The annotated data were sent to computer science expert to use the data in training, validation and testing of newly developed deep learning model based on U-Net. Results: The first model, tested using cropped images of the maxillary first molar with all three roots , achieved an F1-score of 0.86, accuracy of 0.89, recall (sensitivity) of 1.0, precision of 0.75, testing loss of 0.97, and AUC of 0.83; in contrast, the second model, using cropped images of only the mesiobuccal root, showed improved F1-score (0.93) and precision (0.87) with slightly lower accuracy (0.87), the same recall (1.0), lower testing loss (0.40), but a reduced AUC of 0.57.. The results of segmentation accuracy were expressed in Dice-coefficient (DCE), where DCE of training is 0.85 while DCE of testing is 0.79. Conclusion: Our study concluded that the MB2 canal in maxillary first molars can be accurately detected and segmented using a novel CNN- and U-net–based deep learning model. The CNN model showed superior accuracy when analyzing cropped images of just the MB root compared to full three-root images.
520 3 _aشهدت التطورات التكنولوجية في مجال أشعة الوجه و الفكين تقدمًا يتجاوز تقنيات التصوير والأجهزة، حيث أصبح عصر التعلم العميق واقعاً ملموسًا، مع قيام العديد من الشركات بتسويق أدوات التشخيص بمساعدة الحاسوب لحل المشكلات التشخيصية المختلفة وتخطيط الإجراءات الطبية. من المتوقع أن تشهد جودة وعمق مساهمة الأشعة في رعاية المرضى وصحة المجتمع، بالإضافة إلى سير عمل أطباء الأشعة، ثورة مذهلة في السنوات العشر المقبلة بفضل تطبيقات الذكاء الاصطناعي. يعُتبر الفشل في تحديد القنوات أثناء علاج جذور الأسنان أحد الأسباب الأكثر شيوعًا لفشل العلاجات اللبية. ويشمل إعادة علاج الجذور معالجة القنوات التي تم تفويتها، حيث وُجد أن 93% من جميع القنوات المفقودة تكون في الضرس الأول العلوي و44% في الضرس الثاني العلوي، وبالتحديد القناة الدانية الشدقية اثانية.. لذلك، ومن أجل توفير وقت الطبيب ومال المريض من خلال تجنب إعادة علاج الأضراس العلوية، أصبح من الضروري تطوير أداة أوتوماتيكية قادرة على الكشف عن وجود أو غياب القناة الدانية الشدقية االثانية وتحديد تنوعها التشريحي. يهدف هذا البحث إلى دراسة استخدام الذكاء الاصطناعي، لا سيما نموذج تعلم عميق مخصص، للكشف التلقائي والتجزئة للقناة ا الدانية الشدقية الثانية في الأضراس الأولى والثانية العلوية باستخدام صور الأشعة المقطعية بالحاسوب مخروطية الاشعاع ثلاثية الأبعاد. تم استيراد صور الأشعة المقطعية لـ 50 مريضًا إلى برنامج 3d slicer لتقطيع وتجزئة قنوات الضرس الأول العلوي باستخدام أطباء أشعة ذوي خبرة من 5 إلى 18 عامًا لتكون بمثابة الحقيقة المرجعية و تم إرسال البيانات المشروحة إلى خبير في علوم الحاسوب لاستخدامها في تدريب وتقييم نموذج تعلم عميق جديد يعتمد على شبكة .U-Net حقق النموذج الأول الذي تم اختباره باستخدام صور مقصوصة للضرس الأول العلوي بجذوره الثلاثة قيمة F1-score بمقدار 0.86، ودقة0.89 (accuracy) ، واسترجاع )حساسية( 1.0، ودقة إيجابية0.75 (precision) ، وخسارة اختبار 0.97 (testing loss)، ومنحنى AUC بمقدار 0.83؛ بالمقابل، أظهر النموذج الثاني، الذي استخدم صورًا مقصوصة فقط للجذرالداني الشدقي فقط ، تحسيناً في (0.93) F1-score والدقة الإيجابية) 0.87( مع انخفاض طفيف في الدقة الكلية )0.87(، ونفس معدل الاسترجاع) 1.0(، وخسارة اختبار أقل) 0.40(، لكن مع انخفاض في AUC إلى 0.57. أما نتائج دقة التقسيم (segmentation accuracy) فقد عبُرّ عنها بمعاملDice (DCE) ، حيث بلغ DCE للتدريب 0.85 بينما بلغ DCEللاختبار 0.79..
530 _aIssues also as CD.
546 _aText in English and abstract in Arabic & English.
650 0 _adevices and equipment
650 0 _aالأجهزة والمعدات
653 1 _aArtificial intelligence
_aCNN
_adeep learning
_asecond mesiobuccal canal
_aMB2 canal
_aendodontics
_acone beam computed tomography
_aCBCT
700 0 _aEnas Anter
_ethesis advisor.
700 0 _aMushira Dahaba
_ethesis advisor.
700 0 _aArwa Mousa
_ethesis advisor.
900 _b01-01-2025
_cEnas Anter
_cMushira Dahaba
_cArwa Mousa
_cAli Khater
_UCairo University
_FFaculty of Dentistry
_DDepartment of Oral and Maxillofacial Radiology
905 _aShimaa
_eEman Ghareb
942 _2ddc
_cTH
_e21
_n0
999 _c176080