000 04438namaa22004331i 4500
003 EG-GICUC
005 20251221115753.0
008 251129s2025 ua a|||frm||| 000 0 eng d
040 _aEG-GICUC
_beng
_cEG-GICUC
_dEG-GICUC
_erda
041 0 _aeng
_beng
_bara
049 _aDeposit
082 0 4 _a627.05
092 _a627.05
_221
097 _aM.Sc
099 _aCai01.13.05.M.Sc.2025.Ab.A
100 0 _aAbd El Rahman Mohamed Reda Aly Hassan,
_epreparation.
245 1 0 _aAssessment of the impact of rainfall data gap filling on flood mitigation design storms /
_cby Abd El Rahman Mohamed Reda Aly Hassan ; Supervisors Prof. Ahmed Mohamed Helmi, Dr.Mohamed Hassan Algamal.
246 1 5 _aتقييم تأثير ملء فراغات بيانات المطر في مجال درء مخاطر الفيضانات
264 0 _c2025.
300 _a110 pages :
_billustrations ;
_c30 cm. +
_eCD.
336 _atext
_2rda content
337 _aUnmediated
_2rdamedia
338 _avolume
_2rdacarrier
502 _aThesis (M.Sc)-Cairo University, 2025.
504 _aBibliography: pages 107-110.
520 3 _aA methodology for conducting rainfall frequency analysis across several ground gauge stations in Oman and KSA is presented. The main goal is to assess how the accuracy of rainfall frequency analysis which is crucial for hydrological modeling in the field of flood mitigation is affected by the use of gridded data and gap-filling techniques that have already been used. The study includes the collection of rainfall data from a range of rainfall stations within the study areas. Advanced gap-filling methods, implemented by prior researchers, were used to fill the missing data of some years and ensure the continuity of records. Additionally, A gridded data produced from the gap filled data, which offers continuous spatial coverage, was analyzed in comparison to assess its effectiveness. A practical developed software named BRF was introduced. Through parallel computing, BRF makes it possible to process large rainfall datasets efficiently. This allows for simultaneous frequency analysis and statistical distribution fitting across massive amounts of station data. This tool greatly simplifies the analysis of big datasets, which is especially helpful for hydrologists doing regional rainfall studies and experts updating drainage manuals. BRF’s key features include its capability to perform comparisons of different statistical distributions both analytically and graphically, as well as generating IDF curves for selected statistical distributions for all stations an essential aspect for stormwater design and flood risk.
520 3 _aتقدم هذه الدراسة منهجية شاملة لتحليل تكرار الأمطار عبر محطات أرصاد متعددة في السعودية وعُمان، مع التركيز على تأثير تقنيات ملء الفجوات وتحويل البيانات لشبكة. تم جمع ومعالجة بيانات الأمطار، بما في ذلك البيانات المملوءة سابقًا، لضمان استمرارية التحليل. كما تم مقارنة البيانات الشبكية بالملاحظات التقليدية لتقييم دقتها. تم تطوير أداة Bulk Rain Fit (BRF) لتسهيل تحليل البيانات الضخمة باستخدام الحوسبة المتوازية، مما يعزز دقة تلاؤم التوزيعات الإحصائية. توفر BRF مقارنات بين التوزيعات المختلفة، وتنتج منحنيات شدة-مدة-تكرار (IDF)، مما يدعم تصميم بنية تصريف المياه وتقييم مخاطر الفيضانات.
530 _aIssues also as CD.
546 _aText in English and abstract in Arabic & English.
650 0 _aHydraulic engineering
650 0 _aالهندسة الهيدروليكية
653 1 _aFrequency Analysis
_aParameter Estimation
_aKSA
_aOman
_aGap Filling
700 0 _aAhmed Mohamed Helmi
_ethesis advisor.
700 0 _aMohamed Hassan Algamal
_ethesis advisor.
900 _b01-01-2025
_cAhmed Mohamed Helmi
_cMohamed Hassan Algamal
_dAhmed Aly Aly Hassan
_UCairo University
_FFaculty of Engineering
_DDepartment of Irrigation and Hydraulics Engineering
905 _aShimaa
_eEman Ghareb
942 _2ddc
_cTH
_e21
_n0
999 _c176334