000 06362namaa22004451i 4500
003 EG-GICUC
005 20251221143315.0
008 251221s2025 ua a|||frm||| 000 0 eng d
040 _aEG-GICUC
_beng
_cEG-GICUC
_dEG-GICUC
_erda
041 0 _aeng
_beng
_bara
049 _aDeposit
082 0 4 _a631.305
092 _a631.305
_221
097 _aM.Sc
099 _aCai01.07.02.M.Sc.2025.Ro.P
100 0 _aRogaia Haroun Al-Tahir Mohamed,
_epreparation.
245 1 0 _aPredicting green water footprint of sugarcane and cotton crops using hybrid machine learning algorithms based on multi-source data in Sudan /
_cby Rogaia Haroun Al-Tahir Mohamed ; Supervisors Dr. Mohamed El-Sayed Abuarab, Dr. Abd Al Rahman Sayed Ahmed, Dr. Sarah Awad Helalia.
246 1 5 _aالتنبؤ بالبصمة المائية الخضراء لمحاصيل قصب السكر والقطن باستخدام خوارزميات التعلم الآلي الهجينة القائمة عـلى بيانات متعددة المصادر في الســــودان
264 0 _c2025.
300 _a133 pages :
_billustrations ;
_c25 cm. +
_eCD.
336 _atext
_2rda content
337 _aUnmediated
_2rdamedia
338 _avolume
_2rdacarrier
502 _aThesis (M.Sc)-Cairo University, 2025.
504 _aBibliography: pages 117-133.
520 3 _aWater scarcity and climate change are two major challenges facing Sudan, which have led to the migration of many people. The main objective of this study is to evaluate the potential of single and hybrid machine learning (ML) models in predicting the Green Water Footprint (GWFP) of sugarcane and cotton under the influence of climate change. The study will analyze the effects of different input factors, including climate, crop and remote sensing data, to determine the impact of these factors during the period from 2001 to 2020. Seven models, Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), Hybrid RF-XGB, RF-SVR, XGB-SVR and RF-XGB SVR were applied with five scenarios. In reed, the highest MBE was obtained under RF and Sc3 and was 5.14 m3 ton-1 followed by RF-SVR with 5.05 m3 ton-1, while the weakest MBE was 0.03 under RF-SVR and Sc1. The highest R2 values were achieved using the SVR model for all scenarios. What is most noticeable is that the R2 values of the dual hybrid models were higher than those of the triple hybrid models. The highest NSE value was 0.98 under Sc2 (climatic parameters) and XGB-SVR, while the lowest NSE value was recorded with SVR and Sc3 (remote sensing parameters) and was 0.09. RMSE did not have a consistent trend across all ML model combinations and different scenarios but what is noticeable under all statistical evaluation indices is that Sc3 has the worst evaluation dealing with remote sensing parameters (EVI, NDVI, SAVI, and NDWI). The highest significant impact on GWFP came from effective rainfall at 81.67% followed by relative humidity (RH) at 7.5% and then maximum temperature at 5.24%. The conclusion from the study is that when predicting GWFP for sugarcane, individual models achieved equal and in some cases greater results than the dual and triple hybrid models. In the same context, remote sensing indices had no positive impact on GWFP prediction, with Sc3 reflecting the lowest values for all statistical parameters of all models used, so the study recommends SVR with Sc1 or Sc4 depending on data availability. While in cotton, the maximum and minimum RMSE values ranged between 31.35 m3 ton-1 and 166.37 m3 ton 1 , based on the hybrid model RF-XGB-SVR and RF model, respectively, under Sc5 and (Peeff, Tmax) achieved the highest R2 values using hybrid ML models, whether double or triple, across all scenarios, reaching values of 1.0 or 0.99. The lowest R2 value, recorded at 0.0676, was observed under SVR and Sc3, closely followed by XGB and Sc3 with a value of 0.0767. The study recommends the use of hybrid models to reduce the error term in predicting GWFP of sugarcane and cotton.
520 3 _aندرة المياه وتغير المناخ هما تحديان رئيسيان يواجههما السودان، مما أدى إلى هجرة الكثير من الناس. الهدف الرئيسي من هذه الدراسة هو تقييم إمكانات نماذج التعلم الآلي سواء كانت فردية أو هجينة في التنبؤ ببصمة المياه الخضراء (GWFP) لقصب السكر والقطن تحت تأثير تغير المناخ. ستقوم الدراسة بتحليل تأثيرات عوامل المدخلات المختلفة، بما في ذلك البيانات المناخية والمحاصيل والاستشعار عن بعد، لتحديد تأثير هذه العوامل خلال الفترة من 2001 إلى 2020. تم تطبيق سبعة نماذج، الغابة العشوائية (RF)، التدرج الشديد التعزيز (XGBoost)، ودعم الانحدار المتجه (SVR)، وHybrid RF-XGB، وRF-SVR، وXGB-SVR، وRF-XGB-SVR مع خمسة سيناريوهات. في نبات القصب تم الحصول على أعلى MBE تحت RF وSc3 وكان 5.14 م3 طن-1 يليه RF-SVR بمقدار 5.05 م3 طن-1، بينما كان أضعف MBE 0.03 تحت RF-SVR و Sc1 تم تحقيق أعلى قيم R2 باستخدام نموذج SVR لجميع السيناريوهات
530 _aIssues also as CD.
546 _aText in English and abstract in Arabic & English.
650 0 _aAgricultural Engineering
650 0 _aهندسة زراعية
653 1 _aGWFP
_aSugarcane
_aCotton
_aClimate parameters
_aRemote sensing Indices
_aMachine learning models
_aSingle and hybrid models
_aإنتاجية المياه الجوفية في قصب السكر و القطن
_aمعايير المناخ
700 0 _aMohamed El-Sayed Abuarab
_ethesis advisor.
700 0 _aAbd Al Rahman Sayed Ahmed
_ethesis advisor.
700 0 _aSarah Awad Helalia
_ethesis advisor.
900 _b01-01-2025
_cMohamed El-Sayed Abuarab
_cAbd Al Rahman Sayed Ahmed
_cSarah Awad Helalia
_UCairo University
_FFaculty of Agricultural
_DDepartment of Agricultural Engineering
905 _aShimaa
942 _2ddc
_cTH
_e21
_n0
999 _c176890