000 05345namaa22004331i 4500
003 EG-GICUC
005 20260119134008.0
008 260105s2025 ua a|||frm||| 000 0 eng d
040 _aEG-GICUC
_beng
_cEG-GICUC
_dEG-GICUC
_erda
041 0 _aeng
_beng
_bara
049 _aDeposit
082 0 4 _a658.403
092 _a658.403
_221
097 _aPh.D
099 _aCai01.20.02.Ph.D.2025.Yo.I
100 0 _aYomna Hossam Eldin Abdel Aziz Gaber,
_epreparation.
245 1 3 _aAn integrated framework for planning decisions in serial manufacturing system /
_cby Yomna Hossam Eldin Abdel Aziz Gaber ; Supervision Prof. Dr. Ihab Ahmed Fahmy El-khodary, Prof. Dr. Hisham Mohamed Abdelsalam.
246 1 5 _aإطار متكامل لقرارات التخطيط في نظام التصنيع التسلسلي
264 0 _c2025.
300 _a138 Leaves :
_billustrations ;
_c30 cm. +
_eCD.
336 _atext
_2rda content
337 _aUnmediated
_2rdamedia
338 _avolume
_2rdacarrier
502 _aThesis (Ph.D)-Cairo University, 2025.
504 _aBibliography: pages 132-138.
520 3 _aOptimization is paramount in manufacturing, serving as the cornerstone for maintaining competitiveness and long-term viability. This thesis addresses the intricate task of integrating three planning decisions (quantity, quality, and maintenance) within a serial multistage production system. At its core, this research introduces a comprehensive joint optimization model, which serves as the main building block for the solution framework and thoroughly examines the interconnections among these three critical aspects. The novel joint model is designed to encompass buffer allocation for efficiently managing stochastic processing times, part quality inspection planning to minimize defects, and preventive maintenance strategies to mitigate machine deterioration. By integrating these functions, the manufacturing system achieves enhanced overall performance and significant cost reductions. The research demonstrates an average cost reduction of 15% compared to existing models in the literature. The proposed model is formulated as a stochastic mixed-integer nonlinear programming (MINLP) problem, characterized by its NP-hard and combinatorial nature. To effectively address this complex problem, a comprehensive approach is employed, combining a genetic algorithm (GA) as the primary generative method, augmented with hybrid GA variations. Additionally, a simulation-based recursive approach serves as the evaluative technique, both of which collectively form the solution framework. The model and solution algorithm undergo rigorous verification and validation through computational experiments, supported by a design of experiments to fine-tune its parameters. Additionally, a comprehensive discussion of the research findings and their implications is provided, offering valuable insights for practitioners and decision-makers aiming to optimize production processes. This research makes a significant contribution to the existing body of knowledge by presenting a robust framework. This framework not only enhances performance but also reduces costs, effectively addressing the interconnected challenges of quantity, quality, and maintenance in serial multistage production systems.
520 3 _aتقدم الرسالة إطارًا شاملاً للتحسين المشترك في قرارات التخطيط في أنظمة التصنيع التسلسلي، من خلال دمج القرارات المتعلقة بالكمية والجودة والصيانة ضمن إطار عمل تكاملي. يعالج النموذج تخصيص المخازن، وفحص جودة الأجزاء، والصيانة الوقائية بهدف تقليل التكاليف وتحسين كفاءة الإنتاج. تم صياغة النموذج كمشكلة برمجة غير خطية مختلطة الأعداد باستخدام خوارزمية جينية مع تحسينات هجينة ونهج محاكاة تكراري للتقييم. أظهر الإطار انخفاضاً في متوسط التكلفة بنسبة ١٥% مقارنة بالنماذج الحالية. تم التحقق من فعالية الإطار من خلال تجارب حسابية دقيقة، مما يعزز من موثوقيته وقابليته للتطبيق في تحسين أنظمة التصنيع.
530 _aIssues also as CD.
546 _aText in English and abstract in Arabic & English.
650 0 _aOperations research
650 0 _aبحوث العمليات
653 1 _aJoint Optimization
_aPart quality inspection planning
_aBuffer allocation problem
_aPreventive maintenance
_aGenetic algorithm
_alocal search
_aSerial manufacturing system line
_aModeling
_aالأمثلية المشتركة
_aتخطيط فحص جودة الأجزاء
700 0 _aIhab Ahmed Fahmy El-khodary
_ethesis advisor.
700 0 _aHisham Mohamed Abdelsalam
_ethesis advisor.
900 _b01-01-2025
_cIhab Ahmed Fahmy El-khodary
_cHisham Mohamed Abdelsalam
_UCairo University
_FFaculty of Computers and Artificial Intelligence
_DDepartment of Operations Research and Decision Support
905 _aShimaa
_eEman Ghareb
942 _2ddc
_cTH
_e21
_n0
999 _c177424