000 01603cam a2200337 a 4500
003 EG-GiCUC
005 20250223030331.0
008 110103s2009 ua d f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.13.12.M.Sc.2009.Mu.R
100 0 _aMustafa Mohamed Amer
245 1 0 _aRate of penetration predictive model using artificial neural networks /
_cMustafa Mohamed Amer ; Supervised Abdelsattar Dahab , Abdelalim Hashem Elsayed
246 1 5 _aنموذج التنبؤ بمعدل الحفر باستخدام الشبكات العصبية الاصطناعية
260 _aCairo :
_bMustafa Mohamed Amer ,
_c2009
300 _a78 P. :
_bcharts ;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Metallurgical Engineering
520 _aBit performance is a key factor to improve drilling performance and reduce drilling costs . The objective of the research is to provide a tool that can predict ROP in order to optimize bit selection . The specific goal of this study is a mean to predict ROP using Artificial Neural Networks ( ANN ) model . Lithology changes , drilling parameters data and bit data were the inputs of our model
530 _aIssued also as CD
653 4 _aANN
653 4 _aBit
653 4 _aROP
700 0 _aAbdelalim Hashem Elsayed ,
_eSupervisor
700 0 _aAbdelsattar Dahab ,
_eSupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aFatma
_eCataloger
905 _aNazla
_eRevisor
942 _2ddc
_cTH
999 _c32492
_d32492