| 000 | 01603cam a2200337 a 4500 | ||
|---|---|---|---|
| 003 | EG-GiCUC | ||
| 005 | 20250223030331.0 | ||
| 008 | 110103s2009 ua d f m 000 0 eng d | ||
| 040 |
_aEG-GiCUC _beng _cEG-GiCUC |
||
| 041 | 0 | _aeng | |
| 049 | _aDeposite | ||
| 097 | _aM.Sc | ||
| 099 | _aCai01.13.12.M.Sc.2009.Mu.R | ||
| 100 | 0 | _aMustafa Mohamed Amer | |
| 245 | 1 | 0 |
_aRate of penetration predictive model using artificial neural networks / _cMustafa Mohamed Amer ; Supervised Abdelsattar Dahab , Abdelalim Hashem Elsayed |
| 246 | 1 | 5 | _aنموذج التنبؤ بمعدل الحفر باستخدام الشبكات العصبية الاصطناعية |
| 260 |
_aCairo : _bMustafa Mohamed Amer , _c2009 |
||
| 300 |
_a78 P. : _bcharts ; _c30cm |
||
| 502 | _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Metallurgical Engineering | ||
| 520 | _aBit performance is a key factor to improve drilling performance and reduce drilling costs . The objective of the research is to provide a tool that can predict ROP in order to optimize bit selection . The specific goal of this study is a mean to predict ROP using Artificial Neural Networks ( ANN ) model . Lithology changes , drilling parameters data and bit data were the inputs of our model | ||
| 530 | _aIssued also as CD | ||
| 653 | 4 | _aANN | |
| 653 | 4 | _aBit | |
| 653 | 4 | _aROP | |
| 700 | 0 |
_aAbdelalim Hashem Elsayed , _eSupervisor |
|
| 700 | 0 |
_aAbdelsattar Dahab , _eSupervisor |
|
| 856 | _uhttp://172.23.153.220/th.pdf | ||
| 905 |
_aFatma _eCataloger |
||
| 905 |
_aNazla _eRevisor |
||
| 942 |
_2ddc _cTH |
||
| 999 |
_c32492 _d32492 |
||