000 01822cam a2200325 a 4500
003 EG-GiCUC
005 20250223031119.0
008 141213s2014 ua e f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aPh.D
099 _aCai01.13.05.Ph.D.2014.Ha.P
100 0 _aHany Ibrahim Ahmed Awad
245 1 0 _aPredicting the chloride ingress process inside blended concrete using artificial neural networks /
_cHany Ibrahim Ahmed Awad ; Supervised Osama A. Hodhod
246 1 5 _aالتنبؤ بعمل{u٠٦أأ}ة دخول الكلور{u٠٦أأ}دات داخل الخرسانة المخلوطة باستخدام الشبكات العصب{u٠٦أأ}ة الاصطناع{u٠٦أأ}ة
260 _aCairo :
_bHany Ibrahim Ahmed Awad ,
_c2014
300 _a126 P. :
_bplans ;
_c30cm
502 _aThesis (Ph.D.) - Cairo University - Faculty of Engineering - Department of Civil Engineering
520 _aThree back-propagation neural networks (BPNN) were developed. One of them was developed to predict corrosion initiation time by simulating the error function solution to Fick`s second law of diffusion. The other two BPMMs were created to predict the chloride diffusivity in both FA and GGBFS concrete. Comparision between experimental data and ANN model predictions has proven that the developed ANN models have efficiently characterized both the chloride diffusivity of high performance concrete and the error function solution to Fick`s second law of diffustion
530 _aIssued also as CD
653 4 _aChloride
653 4 _aDiffusion
653 4 _aSlag
700 0 _aOsama Abdalghafour Hodhod ,
_eSupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aNazla
_eRevisor
905 _aSamia
_eCataloger
942 _2ddc
_cTH
999 _c48699
_d48699