000 01886cam a2200337 a 4500
003 EG-GiCUC
005 20250223031306.0
008 150908s2014 ua de f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.13.10.M.Sc.2014.Al.S
100 0 _aAlmoataz-Bellah Mohamed Alsayed Hegab
245 1 0 _aSimplified neuron model with memristive ionic channels /
_cAlmoataz-Bellah Mohamed Alsayed Hegab ; Supervised Noha Mohamed Salem , Ahmed Gomaa Radwan
246 1 5 _aنموذج مبسط للخلية العصبية باستخدام مقاوم ذى ذاكرة لتمثيل المسارات الأيونية
260 _aCairo :
_bAlmoataz-Bellah Mohamed Alsayed Hegab ,
_c2014
300 _a71 P. :
_bcharts , plans ;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Mathematics and Physics
520 _aFirst of all, we have introduced a simplified neuron model, however it produces an action potential that follows the original Hodgkin and Huxley model. The genetic optimization algorithm has been used in order to enhance the modulating parameters of the proposed model. The ion channel equations in the simplified neuron model have been generalized to represent a simplified memristor model that could approximate different experimental results of memristive devices. This approach could be considered as a step forward in the creation of a nano-scale memristor based neural network
530 _aIssued also as CD
653 4 _aHodgkin and Huxley Equations
653 4 _aMemristors
653 4 _aNeuron Model
700 0 _aAhmed Gomaa Radwan ,
_eSupervisor
700 0 _aNoha Mohamed Salem ,
_eSupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aEnas
_eCataloger
905 _aNazla
_eRevisor
942 _2ddc
_cTH
999 _c52281
_d52281