| 000 | 02013cam a2200349 a 4500 | ||
|---|---|---|---|
| 003 | EG-GiCUC | ||
| 005 | 20250223032203.0 | ||
| 008 | 190210s2018 ua d f m 000 0 eng d | ||
| 040 |
_aEG-GiCUC _beng _cEG-GiCUC |
||
| 041 | 0 | _aeng | |
| 049 | _aDeposite | ||
| 097 | _aM.Sc | ||
| 099 | _aCai01.20.03.M.Sc.2018.As.A | ||
| 100 | 0 | _aAsmaa Hamad Elsaied Mohamed | |
| 245 | 1 | 0 |
_aApplication of swarm intelligence optimization for enhancing detection of epileptic seizures in EEG signals / _cAsmaa Hamad Elsaied Mohamed ; Supervised Aly Aly Fahmy , Aboulella Hassanien , Essam Halim Houssein |
| 246 | 1 | 5 | _aتطبيق امثلية الذكاء السربي لتحسين نوبات اكتشاف الصرع في إشارات رسم المخ |
| 260 |
_aCairo : _bAsmaa Hamad Elsaied Mohamed , _c2018 |
||
| 300 |
_a89 Leaves : _bcharts ; _c30cm |
||
| 502 | _aThesis (M.Sc.) - Cairo University - Faculty of Computers and Information - Department of Computer Science | ||
| 520 | _aThe thesis introduces a hybrid classification model using swarm optimization algorithms and support vector machines (SVMs) for automatic seizure detection in EEG. This proposed classification model consists of four main phases; namely,1) EEG pre-processing used to remove the noises from the EEG signals and decompose EEG signal into various sub-bands,2) feature extraction used to extract the EEG signal features from decomposed signal,3) Feature selection and classifier Parameters Optimization based swarm algorithms and 4) classification phase that is mainly used to analyze and classify the EEG signal into normal or abnormal | ||
| 530 | _aIssued also as CD | ||
| 653 | 4 | _aEEG | |
| 653 | 4 | _aMachine Learning | |
| 653 | 4 | _aSwarm Intelligence | |
| 700 | 0 |
_aAboulella Hassanien , _eSupervisor |
|
| 700 | 0 |
_aAly Aly Fahmy , _eSupervisor |
|
| 700 | 0 |
_aEssam Halim Houssein , _eSupervisor |
|
| 856 | _uhttp://172.23.153.220/th.pdf | ||
| 905 |
_aNazla _eRevisor |
||
| 905 |
_aShimaa _eCataloger |
||
| 942 |
_2ddc _cTH |
||
| 999 |
_c70062 _d70062 |
||