000 02013cam a2200349 a 4500
003 EG-GiCUC
005 20250223032203.0
008 190210s2018 ua d f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.20.03.M.Sc.2018.As.A
100 0 _aAsmaa Hamad Elsaied Mohamed
245 1 0 _aApplication of swarm intelligence optimization for enhancing detection of epileptic seizures in EEG signals /
_cAsmaa Hamad Elsaied Mohamed ; Supervised Aly Aly Fahmy , Aboulella Hassanien , Essam Halim Houssein
246 1 5 _aتطبيق امثلية الذكاء السربي لتحسين نوبات اكتشاف الصرع في إشارات رسم المخ
260 _aCairo :
_bAsmaa Hamad Elsaied Mohamed ,
_c2018
300 _a89 Leaves :
_bcharts ;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Computers and Information - Department of Computer Science
520 _aThe thesis introduces a hybrid classification model using swarm optimization algorithms and support vector machines (SVMs) for automatic seizure detection in EEG. This proposed classification model consists of four main phases; namely,1) EEG pre-processing used to remove the noises from the EEG signals and decompose EEG signal into various sub-bands,2) feature extraction used to extract the EEG signal features from decomposed signal,3) Feature selection and classifier Parameters Optimization based swarm algorithms and 4) classification phase that is mainly used to analyze and classify the EEG signal into normal or abnormal
530 _aIssued also as CD
653 4 _aEEG
653 4 _aMachine Learning
653 4 _aSwarm Intelligence
700 0 _aAboulella Hassanien ,
_eSupervisor
700 0 _aAly Aly Fahmy ,
_eSupervisor
700 0 _aEssam Halim Houssein ,
_eSupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aNazla
_eRevisor
905 _aShimaa
_eCataloger
942 _2ddc
_cTH
999 _c70062
_d70062