000 01743cam a2200337 a 4500
003 EG-GiCUC
005 20250223032203.0
008 190211s2018 ua dh f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.20.03.M.Sc.2018.Sa.K
100 0 _aSarah Osama Talaat Ibrahim
245 1 0 _aKernel-based swarm optimization for renewable energy application /
_cSarah Osama Talaat Ibrahim ; Supervised Aly Aly Fahmy , Aboul Ella Hassanien
246 1 5 _aأمثلية الذكاء السربي المعتمد على دالة النواة لتطبيقات الطاقة المتجددة
260 _aCairo :
_bSarah Osama Talaat Ibrahim ,
_c2018
300 _a102 Leaves :
_bcharts , facsimiles ;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Computers and Information - Department of Computer Science
520 _aForecasting wind and solar behaviors (e.g., wind speed and global solar radiation) is importantfor energy managers and electricity traders. Moreover, the scientific prediction methods for renewable energy can improve the reliability and efficiency of the renewable power generation units. In the last few years, Support Vector Regression (SVR) has been applied to forecast the renewable energy. The performance and stability of SVR depend on their meta-parameters
530 _aIssued also as CD
653 4 _aRenewable Energy
653 4 _aSolar radiation
653 4 _aWind speed
700 0 _aAboulella Hassanien ,
_eSupervisor
700 0 _aAly Aly Fahmy ,
_eSupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aNazla
_eRevisor
905 _aShimaa
_eCataloger
942 _2ddc
_cTH
999 _c70073
_d70073